Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(1)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254994

RESUMO

Lodging poses a significant challenge to rice yield, prompting the need to identify elite alleles for lodging resistance traits to improve cultivated rice varieties. In this study, a natural population of 518 rice accessions was examined to identify elite alleles associated with plant height (PH), stem diameter (SD), stem anti-thrust (AT/S), and various internode lengths (first (FirINL), second (SecINL), third (ThirINL), fourth (ForINL), and fifth (FifINL) internode lengths). A total of 262 SSR markers linked to these traits were uncovered through association mapping in two environmental conditions. Phenotypic evaluations revealed striking differences among cultivars, and genetic diversity assessments showed polymorphisms across the accessions. Favorable alleles were identified for PH, SD, AT/S, and one to five internode lengths, with specific alleles displaying considerable effects. Noteworthy alleles include RM6811-160 bp on chromosome 6 (which reduces PH) and RM161-145 bp on chromosome 5 (which increases SD). The study identified a total of 42 novel QTLs. Specifically, seven QTLs were identified for PH, four for SD, five for AT/S, five for FirINL, six for SecINL, five for ThirINL, six for ForINL, and four for FifINL. QTLs qAT/S-2, qPH2.1, qForINL2.1, and qFifINL exhibited the most significant phenotypic variance (PVE) of 3.99% for the stem lodging trait. AT/S, PH, ForINL, and FifINL had additive effects of 5.31 kPa, 5.42 cm, 4.27 cm, and 4.27 cm, respectively, offering insights into eight distinct cross-combinations for enhancing each trait. This research suggests the potential for crossbreeding superior parents based on stacked alleles, promising improved rice cultivars with enhanced lodging resistance to meet market demands.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Alelos , Axônios
2.
Plants (Basel) ; 11(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406978

RESUMO

Plant height (PH) and its component traits are critical determinants of lodging resistance and strongly influence yield in rice. The genetic architecture of PH and its component traits were mined in two mapping populations. In the natural population composed of 504 accessions, a total of forty simple sequence repeat (SSR) markers associated with PH and its component traits were detected across two environments via association mapping. Allele RM305-210 bp on chromosome 5 for PH had the largest phenotypic effect value (PEV) (-51.42 cm) with a reducing effect. Allele RM3533-220 bp on chromosome 9 for panicle length and allele RM264-120 bp on chromosome 8 for the length of upper first elongated internode (1IN) showed the highest positive PEV. Among the elongated internodes with negative effects being desirable, the allele RM348-130 bp showed the largest PEV (-7.48 cm) for the length of upper second elongated internode. In the chromosome segment substitution line population consisting of 53 lines, a total of nine QTLs were detected across two environments, with the phenotypic variance explained (PVE) ranging 10.07-28.42%. Among the detected QTLs, q1IN-7 explained the largest PVE (28.42%) for the 1IN, with an additive of 5.31 cm. The favorable allele RM257-125 bp on chromosome 9 for the 1IN increasing was detected in both populations. The favorable alleles provided here could be used to shape PH architecture against lodging.

3.
Funct Integr Genomics ; 16(5): 481-93, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27179522

RESUMO

Calcium-dependent protein kinases (CDPKs) play important roles in various aspects of plant physiology and involve in many cellular processes. However, genome-wide analysis of CDPK family in plant species is limited and few studies have been reported in soybean. In this study, a total of 39 genes encoding CDPKs were identified from the whole-genome sequence of soybean (Glycine max), which were denominated as GmCPK1-GmCPK39. These 39 CDPK genes could be classified into four subfamilies, and most genes showed tissue-specific expression patterns. Eight soybean CDPKs clustered together with the previously reported CDPKs related to pathogen, wounding, or herbivore stress were further analyzed. Differential gene expression analysis of these eight CDPK genes in response to herbivore and wounding stresses helps us identify GmCPK3 and GmCPK31 as the candidate genes for herbivore resistance in soybean, whose relative transcript abundance rapidly increased after wound and herbivore attacks. Sub-cellular localization revealed that GmCPK3 and GmCPK31 were localized in plasma membranes, which is consistent with previously reported plant defense related CDPKs. These results may suggest that GmCPK3 and GmCPK31 play important roles in the plant response to biotic stress. Simultaneously, our study will provide an important foundation for further functional characterization of the soybean CDPK gene family.


Assuntos
Glycine max/genética , Filogenia , Proteínas Quinases/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Herbivoria , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Proteínas Quinases/biossíntese , Proteínas Quinases/classificação , Glycine max/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...