Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; : 142950, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069099

RESUMO

Wildland-urban interface (WUI) fires consume fuels, such as vegetation and structural materials, leaving behind ash composed primarily of pyrogenic carbon and metal oxides. However, there is currently limited understanding of the role of WUI fire ash from different sources as a source of paramagnetic species such as environmentally persistent free radicals (EPFRs) and transition metals in the environment. Electron paramagnetic resonance (EPR) was used to detect and quantify paramagnetic species, including organic persistent free radicals and transition metal spins, in fifty-three fire ash and soil samples collected following the North Complex Fire and the Sonoma-Lake-Napa Unit (LNU) Lightning Complex Fire, California, 2020. High concentrations of organic EPFRs (e.g., 1.4 x 1014 to 1.9 x 1017 spins g-1) were detected in the studied WUI fire ash along with other paramagnetic species such as iron and manganese oxides, as well as Fe3+ and Mn2+ ions. The mean concentrations of EPFRs in various ash types decreased following the order: vegetation ash (1.1 x 1017 ± 1.1 x 1017 spins g-1) > structural ash (1.6 x 1016 ± 3.7 x 1016 spins g-1) > vehicle ash (6.4 x 1015 ± 8.6 x 1015 spins g-1) > soil (3.2 x 1015 ± 3.7 x 1015 spins g-1). The mean concentrations of EPFRs decreased with increased combustion completeness indicated by ash color; black (1.1 x 1017 ± 1.1 x 1017 spins g-1) > white (2.5 x 1016 ± 4.4 x 1016 spins g-1) > gray (1.8 x 1016 ± 2.4 x 1016 spins g-1). In contrast, the relative amounts of reduced Mn2+ ions increased with increased combustion completeness. Thus, WUI fire ash is an important global source of EPFRs and reduced metal species (e.g., Mn2+). Further research is needed to underpin the formation, transformation, and environmental and human health impacts of these paramagnetic species in light of the projected increased frequency, size, and severity of WUI fires.

2.
Org Biomol Chem ; 21(20): 4290-4296, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37158009

RESUMO

Electrochemical synthesis techniques are currently of great interest due to the possibility of synthesizing products while limiting reactant and energy input and providing potentially unique selectivity. Our group has previously reported the development of the "anion pool" synthesis method. As this is a new method for organic synthesis and the coupling of C-N bonds, it is important to understand the reactivity trends and limitations this method provides. In this report we explore the reactivity trends of a series of nitrogen-containing heterocycles under reductive electrochemical conditions. The results show that anionic nitrogen heterocycles are stable at room temperature in acetonitrile/electrolyte solutions up to a parent N-H pKa value up to 23. Addition of carbon electrophiles to solutions containing the electrochemically generated anionic nitrogen heterocycles led to the C-N cross-coupling reactivity. Product yields tracked linearly with the pKa value of the N-H bond of the heterocycles over 4 orders of acidity magnitude. Both benzylic halides and perfluorinated aromatics were found suitable for undergoing C-N cross-coupling with the anionic nitrogen heterocycles with product yields as high as 90%. It is also shown that the stability and reactivity of the anions are affected by the choice of electrolyte and temperature. Additionally, this procedure compares well to green chemistry processes in atom economy and PMI values.

3.
J Am Chem Soc ; 143(7): 2938-2943, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33571412

RESUMO

The photocatalytic oxidative coupling of aryl amines to selectively synthesize azoaromatic compounds has been realized. Multiple different photocatalysts can be used to perform the general reaction; however, Ir(dF-CF3-ppy)2(dtbpy)+, where dF-CF3-ppy is 2-(2,4-difluorophenyl)-5-(trifluoromethyl)pyridine and dtpby is 4,4'-tert-butyl-2,2'-bipyridine, showed the greatest range of reactivity with various amine substrates. Both electron-rich and -deficient amines can be coupled with yields up to 95% under an ambient air atmosphere. Oxygen was deemed to be essential for the reaction and is utilized in the regeneration of the photocatalyst. Fluorescence quenching and radical trap experiments indicate an amine radical coupling mechanism that proceeds through a hydrazoaromatic intermediate before further oxidation occurs to form the desired azoaromatic products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...