Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Cancer ; 24(5): 316-337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627557

RESUMO

Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Proteínas ras/metabolismo , Proteínas ras/genética , Proteínas ras/antagonistas & inibidores , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Transdução de Sinais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
2.
J Med Chem ; 64(4): 2046-2063, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33534563

RESUMO

Herein, we report the synthesis and evaluation of novel analogues of UK-5099 both in vitro and in vivo for the development of mitochondrial pyruvate carrier (MPC) inhibitors to treat hair loss. A comprehensive understanding of the structure-activity relationship was obtained by varying four positions of the hit compound, namely, the alkyl group on the N1 position, substituents on the indole core, various aromatic and heteroaromatic core structures, and various Michael acceptors. The major discovery was that the inhibitors with a 3,5-bis(trifluoromethyl)benzyl group at the N1 position were shown to have much better activity than JXL001 (UK-5099) to increase cellular lactate production. Additionally, analogue JXL069, possessing a 7-azaindole heterocycle, was also shown to have significant MPC inhibition activity, which further increases the chemical space for drug design. Finally, more than 10 analogues were tested on shaved mice by topical treatment and promoted obvious hair growth on mice.


Assuntos
Acrilatos/uso terapêutico , Alopecia/tratamento farmacológico , Indóis/uso terapêutico , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Acrilatos/síntese química , Animais , Indóis/síntese química , Ácido Láctico/metabolismo , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...