Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Transplant ; 12(10): 2675-88, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22823145

RESUMO

Toll-like receptors (TLRs) activate biochemical pathways that evoke activation of innate immunity, which leads to dendritic cell (DC) maturation and initiation of adaptive immune responses that provoke allograft rejection. We aimed to prolong allograft survival by selectively inhibiting expression of the common adaptors of TLR signaling, namely MyD88 and TRIF, using siRNA. In vitro we demonstrated that blocking expression of MyD88 and TRIF led to reduced DC maturation. In vivo treatment of recipients with MyD88 and TRIF siRNA significantly prolonged allograft survival in the BALB/c > C57BL6 cardiac transplant model. Moreover, the combination of MyD88 and TRIF siRNA along with a low dose of rapamycin further extended the allograft survival (88.8 ± 7.1 days). Tissue histopathology demonstrated an overall reduction in lymphocyte interstitium infiltration, vascular obstruction and hemorrhage in mice treated with MyD88 and TRIF siRNA vector plus rapamycin. Furthermore, treatment was associated with an increase in the numbers of CD4(+) CD25(+) FoxP3(+) regulatory T cells and Th2 deviation. To our knowledge, this study is the first demonstration of prolonging the survival of allogeneic heart grafts through gene silencing of TLR signaling adaptors, highlighting the therapeutic potential of siRNA in clinical transplantation.


Assuntos
Inativação Gênica , Transplante de Coração/imunologia , Tolerância Imunológica , Receptores Toll-Like/genética , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Teste de Cultura Mista de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
2.
Am J Transplant ; 11(9): 1835-44, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21794086

RESUMO

RNAi-based therapy is a promising strategy for the prevention of ischemia-reperfusion injury (IRI). However, systemic administration of small interfering RNA (siRNA) may cause globally nonspecific targeting of all tissues, which impedes clinical use. Here we report a hepatocyte-specific delivery system for the treatment of liver IRI, using galactose-conjugated liposome nanoparticles (Gal-LipoNP). Heptocyte-specific targeting was validated by selective in vivo delivery as observed by increased Gal-LipoNP accumulation and gene silencing in the liver. Gal-LipoNP TLR4 siRNA treatment resulted in a significant decrease of serum alanine transferase (ALT) and aspartate transaminase (AST) in a hepatic IRI model. Histopathology displayed an overall reduction of the injury area in the Gal-LipoNP TLR4 siRNA treated mice. Additionally, neutrophil accumulation and lipid peroxidase-mediated tissue injury, detected by MPO, MDA and ROS respectively, were attenuated after Gal-LipoNP TLR4 siRNA treatment. Moreover, therapeutic effects of Gal-LipoNP TLR4 siRNA were associated with suppression of the inflammatory cytokines IL-1 and TNF-α. Taken together, this study is the first demonstration of liver IRI treatment using liver-specific siRNA delivery.


Assuntos
Inativação Gênica , Lipossomos , Fígado/irrigação sanguínea , Nanopartículas , Traumatismo por Reperfusão/prevenção & controle , Receptor 4 Toll-Like/genética , Animais , Sequência de Bases , Primers do DNA , Imuno-Histoquímica , Camundongos , Reação em Cadeia da Polimerase , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...