Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 374: 128763, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36813049

RESUMO

Enzymatic treatment of microalgal biomass is a promising approach for extraction of microalgal lipid, but high cost of commercially sourcing enzyme is a major drawback in industrial implementation. Present study involves extraction of eicosapentaenoic acid-rich oil from Nannochloropsis sp. biomass using low cost cellulolytic enzymes produced from Trichoderma reesei in a solid-state fermentation bioreactor. Maximum total fatty acid recovery of 369.4 ± 4.6 mg/g dry weight (total fatty acid yield of 77%) was achieved in 12 h from the enzymatically treated microalgal cells, of which the eicosapentaenoic acid content was 11%. Sugar release of 1.70 ± 0.05 g/L was obtained post enzymatic treatment at 50 °C. The enzyme was reused thrice for cell wall disruption without compromising on total fatty acid yield. Additionally, high protein content of 47% in the defatted biomass could be explored as a potential aquafeed, thus enhancing the overall economics and sustainability of the process.


Assuntos
Microalgas , Estramenópilas , Ácido Eicosapentaenoico , Fermentação , Reatores Biológicos , Estramenópilas/metabolismo , Biomassa , Microalgas/metabolismo
2.
J Appl Microbiol ; 132(6): 4170-4185, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35238451

RESUMO

Utilization of sustainable natural resources such as microalgae has been considered for the production of biofuels, aquaculture feed, high-value bioactives such as omega-3 fatty acids, carotenoids, etc. Eicosapentaenoic acid (EPA) is an omega-3 fatty acid present in fish oil, which is of physiological importance to both humans and fish. Marine microalgae are sustainable sources of lipid rich in EPA, and different species have been explored for the production of EPA as a single product. There has been a rising interest in the concept of a multi-product biorefinery, focusing on the maximum valorization of the algal biomass. Targeting one or more value-added compounds in a biorefinery scenario can improve the commercial viability of low-value products such as triglycerides for biofuel. This approach has been viewed by technologists and experts as a sustainable and economically feasible possibility for the large-scale production of microalgae for its potential applications in biodiesel and jet fuel production, nutraceuticals, animal and aquaculture feeds, etc. In this review paper, we describe the recent developments in the production of high-value EPA-rich oil from microalgae, emphasizing the upstream and downstream bioprocess techniques, and the advantages of considering an EPA-rich oil-based biorefinery.


Assuntos
Ácidos Graxos Ômega-3 , Microalgas , Animais , Biocombustíveis , Biomassa , Ácido Eicosapentaenoico , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...