Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 44, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956741

RESUMO

BACKGROUND: Microbial methane oxidation, methanotrophy, plays a crucial role in mitigating the release of the potent greenhouse gas methane from aquatic systems. While aerobic methanotrophy is a well-established process in oxygen-rich environments, emerging evidence suggests their activity in hypoxic conditions. However, the adaptability of these methanotrophs to such environments has remained poorly understood. Here, we explored the genetic adaptability of aerobic methanotrophs to hypoxia in the methanogenic sediments of Lake Kinneret (LK). These LK methanogenic sediments, situated below the oxidic and sulfidic zones, were previously characterized by methane oxidation coupled with iron reduction via the involvement of aerobic methanotrophs. RESULTS: In order to explore the adaptation of the methanotrophs to hypoxia, we conducted two experiments using LK sediments as inoculum: (i) an aerobic "classical" methanotrophic enrichment with ambient air employing DNA stable isotope probing (DNA-SIP) and (ii) hypoxic methanotrophic enrichment with repeated spiking of 1% oxygen. Analysis of 16S rRNA gene amplicons revealed the enrichment of Methylococcales methanotrophs, being up to a third of the enriched community. Methylobacter, Methylogaea, and Methylomonas were prominent in the aerobic experiment, while hypoxic conditions enriched primarily Methylomonas. Using metagenomics sequencing of DNA extracted from these experiments, we curated five Methylococcales metagenome-assembled genomes (MAGs) and evaluated the genetic basis for their survival in hypoxic environments. A comparative analysis with an additional 62 Methylococcales genomes from various environments highlighted several core genetic adaptations to hypoxia found in most examined Methylococcales genomes, including high-affinity cytochrome oxidases, oxygen-binding proteins, fermentation-based methane oxidation, motility, and glycogen use. We also found that some Methylococcales, including LK Methylococcales, may denitrify, while metals and humic substances may also serve as electron acceptors alternative to oxygen. Outer membrane multi-heme cytochromes and riboflavin were identified as potential mediators for the utilization of metals and humic material. These diverse mechanisms suggest the ability of methanotrophs to thrive in ecological niches previously thought inhospitable for their growth. CONCLUSIONS: Our study sheds light on the ability of enriched Methylococcales methanotrophs from methanogenic LK sediments to survive under hypoxia. Genomic analysis revealed a spectrum of genetic capabilities, potentially enabling these methanotrophs to function. The identified mechanisms, such as those enabling the use of alternative electron acceptors, expand our understanding of methanotroph resilience in diverse ecological settings. These findings contribute to the broader knowledge of microbial methane oxidation and have implications for understanding and potential contribution methanotrophs may have in mitigating methane emissions in various environmental conditions.

2.
Front Microbiol ; 14: 1197299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547683

RESUMO

Microbial dissimilatory iron reduction is a fundamental respiratory process that began early in evolution and is performed in diverse habitats including aquatic anoxic sediments. In many of these sediments microbial iron reduction is not only observed in its classical upper zone, but also in the methane production zone, where low-reactive iron oxide minerals are present. Previous studies in aquatic sediments have shown the potential role of the archaeal methanogen Methanosarcinales in this reduction process, and their use of methanophenazines was suggested as an advantage in reducing iron over other iron-reducing bacteria. Here we tested the capability of the methanogenic archaeon Methanosarcina barkeri to reduce three naturally abundant iron oxides in the methanogenic zone: the low-reactive iron minerals hematite and magnetite, and the high-reactive amorphous iron oxide. We also examined the potential role of their methanophenazines in promoting the reduction. Pure cultures were grown close to natural conditions existing in the methanogenic zone (under nitrogen atmosphere, N2:CO2, 80:20), in the presence of these iron oxides and different electron shuttles. Iron reduction by M. barkeri was observed in all iron oxide types within 10 days. The reduction during that time was most notable for amorphous iron, then magnetite, and finally hematite. Importantly, the reduction of iron inhibited archaeal methane production. When hematite was added inside cryogenic vials, thereby preventing direct contact with M. barkeri, no iron reduction was observed, and methanogenesis was not inhibited. This suggests a potential role of methanophenazines, which are strongly associated with the membrane, in transferring electrons from the cell to the minerals. Indeed, adding dissolved phenazines as electron shuttles to the media with iron oxides increased iron reduction and inhibited methanogenesis almost completely. When M. barkeri was incubated with hematite and the phenazines together, there was a change in the amounts (but not the type) of specific metabolites, indicating a difference in the ratio of metabolic pathways. Taken together, the results show the potential role of methanogens in reducing naturally abundant iron minerals in methanogenic sediments under natural energy and substrate limitations and shed new insights into the coupling of microbial iron reduction and the important greenhouse gas methane.

3.
Front Microbiol ; 14: 1206414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577416

RESUMO

In methane (CH4) generating sediments, methane oxidation coupled with iron reduction was suggested to be catalyzed by archaea and bacterial methanotrophs of the order Methylococcales. However, the co-existence of these aerobic and anaerobic microbes, the link between the processes, and the oxygen requirement for the bacterial methanotrophs have remained unclear. Here, we show how stimulation of aerobic methane oxidation at an energetically low experimental environment influences net iron reduction, accompanied by distinct microbial community changes and lipid biomarker patterns. We performed incubation experiments (between 30 and 120 days long) with methane generating lake sediments amended with 13C-labeled methane, following the additions of hematite and different oxygen levels in nitrogen headspace, and monitored methane turnover by 13C-DIC measurements. Increasing oxygen exposure (up to 1%) promoted aerobic methanotrophy, considerable net iron reduction, and the increase of microbes, such as Methylomonas, Geobacter, and Desulfuromonas, with the latter two being likely candidates for iron recycling. Amendments of 13C-labeled methanol as a potential substrate for the methanotrophs under hypoxia instead of methane indicate that this substrate primarily fuels methylotrophic methanogenesis, identified by high methane concentrations, strongly positive δ13CDIC values, and archaeal lipid stable isotope data. In contrast, the inhibition of methanogenesis by 2-bromoethanesulfonate (BES) led to increased methanol turnover, as suggested by similar 13C enrichment in DIC and high amounts of newly produced bacterial fatty acids, probably derived from heterotrophic bacteria. Our experiments show a complex link between aerobic methanotrophy and iron reduction, which indicates iron recycling as a survival mechanism for microbes under hypoxia.

4.
Front Microbiol ; 13: 931648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35801098
5.
Sci Total Environ ; 848: 157590, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35901888

RESUMO

Intermittent increases of dissolved ferrous iron concentrations have been observed in deep marine methanic sediments which is different from the traditional diagenetic electron acceptor cascade, where iron reduction precedes methanogenesis. Here we aimed to gain insight into the mechanism of iron reduction and the associated microbial processes in deep sea methanic sediment by setting up long-term high-pressure incubation experiments supplemented with ferrihydrite and methane. Continuous iron reduction was observed during the entire incubation period. Intriguingly, ferrihydrite addition shifted the archaeal community from the dominance of hydrogenotrophic methanogens (Methanogenium) to methylotrophic methanogens (Methanococcoides). The enriched samples were then amended with 13C-labeled methane and different iron (oxyhydr)oxides in batch slurries to test the mechanism of iron reduction. Intensive iron reduction was observed, the highest rates with ferrihydrite, followed by hematite and then magnetite, however, no anaerobic oxidation of methane (AOM) was observed in any treatment. Further tests on the enriched slurry showed that the addition of molybdate decreased iron reduction, suggesting a link between iron reduction with sulfur cycling. This was accompanied by the enrichment of microbes capable of dissimilatory sulfate reduction and sulfur/thiosulfate oxidation, which indicates the presence of a cryptic sulfur cycle in the incubation system with the addition of iron (oxyhydr)oxides. Our work suggests that under low sulfate conditions, the presence of iron (oxyhydr)oxides would trigger a cascade of microbial reactions, and iron reduction could link with the microbial sulfur cycle, changing the kinetics of the methanogenesis process in methanic sediment.


Assuntos
Ferro , Óxidos , Compostos Férricos , Óxido Ferroso-Férrico , Sedimentos Geológicos , Metano , Sulfatos , Enxofre , Tiossulfatos
6.
Geobiology ; 20(4): 518-532, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35384246

RESUMO

The hypersaline Dead Sea and its sediments are natural laboratories for studying extremophile microorganism habitat response to environmental change. In modern times, increased freshwater runoff to the lake surface waters resulted in stratification and dilution of the upper water column followed by microbial blooms. However, whether these events facilitated a microbial response in the deep lake and sediments is obscure. Here we investigate archived evidence of microbial processes and changing regional hydroclimate conditions by reconstructing deep Dead Sea chemical compositions from pore fluid major ion concentration and stable S, O, and C isotopes, together with lipid biomarkers preserved in the hypersaline deep Dead Sea ICDP-drilled core sediments dating to the early Holocene (ca. 10,000 years BP). Following a significant negative lake water balance resulting in salt layer deposits at the start of the Holocene, there was a general period of positive net water balance at 9500-8300 years BP. The pore fluid isotopic composition of sulfate exhibit evidence of intensified microbial sulfate reduction, where both δ34S and δ18O of sulfate show a sharp increase from estimated base values of 15.0‰ and 13.9‰ to 40.2‰ and 20.4‰, respectively, and a δ34S vs. δ18O slope of 0.26. The presence of the n-C17 alkane biomarker in the sediments suggests an increase of cyanobacteria or phytoplankton contribution to the bulk organic matter that reached the deepest parts of the Dead Sea. Although hydrologically disconnected, both the Mediterranean Sea and the Dead Sea microbial ecosystems responded to increased freshwater runoff during the early Holocene, with the former depositing the organic-rich sapropel 1 layer due to anoxic water column conditions. In the Dead Sea prolonged positive net water balance facilitated primary production and algal blooms in the upper waters and intensified microbial sulfate reduction in the hypolimnion and/or at the sediment-brine interface.


Assuntos
Ecossistema , Lagos , Benzopiranos , Sedimentos Geológicos/química , Substâncias Húmicas , Sulfatos , Água
7.
Glob Chang Biol ; 28(10): 3206-3221, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35243729

RESUMO

Methane (CH4 ) release to the atmosphere from thawing permafrost contributes significantly to global CH4 emissions. However, constraining the effects of thaw that control the production and emission of CH4 is needed to anticipate future Arctic emissions. Here are presented robust rate measurements of CH4 production and cycling in a region of rapidly degrading permafrost. Big Trail Lake, located in central Alaska, is a young, actively expanding thermokarst lake. The lake was investigated by taking two 1 m cores of sediment from different regions. Two independent methods of measuring microbial CH4  production, long term (CH4 accumulation) and short term (14 C tracer), produced similar average rates of 11 ± 3.5 and 9 ± 3.6 nmol cm-3  d-1 , respectively. The rates had small variations between the different lithological units, indicating homogeneous CH4 production despite heterogeneous lithology in the surface ~1 m of sediment. To estimate the total CH4 production, the CH4 production rates were multiplied through the 10-15 m deep talik (thaw bulb). This estimate suggests that CH4  production is higher than emission by a maximum factor of ~2, which is less than previous estimates. Stable and radioactive carbon isotope measurements showed that 50% of dissolved CH4 in the first meter was produced further below. Interestingly, labeled 14 C incubations with 2-14 C acetate and 14 C CO2 indicate that variations in the pathway used by microbes to produce CH4 depends on the age and type of organic matter in the sediment, but did not appear to influence the rates at which CH4  was produced. This study demonstrates that at least half of the CH4 produced by microbial breakdown of organic matter in actively expanding thermokarst is emitted to the atmosphere, and that the majority of this CH4 is produced in the deep sediment.


Assuntos
Pergelissolo , Regiões Árticas , Atmosfera , Lagos , Metano/metabolismo
8.
Water Res ; 188: 116508, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075599

RESUMO

Reverse osmosis (RO) seawater desalination is a widely applied technological process to supply potable water worldwide. Recently, saline groundwater (SGW) pumped from beach wells in coastal aquifers that penetrate beneath the freshwater-seawater interface is considered as a better alternative water source to RO seawater desalination as it is naturally filtered within the sediments which reduces membrane fouling and pre-treatment costs. The SGW of many coastal aquifers is anoxic - and thus, in a low redox stage - has elevated concentrations of dissolved manganese, iron and sulfides. We studied the influence of the SGW redox stage and chemistry on the performance - permeate flux and fouling properties - of RO desalination process. SGWs from three different coastal aquifers were sampled and characterized chemically, and RO desalination experiments were performed under inert and oxidized conditions. Our results show that all three aquifers have anoxic saline groundwater and two of them have intensive anaerobic oxidation of organic matter. Two aquifers were found to be in the denitrification stage or slightly lower and the third one in the sulfate reduction stage. Our results indicate that the natural redox stage of SGWs from coastal aquifers affects the performance of RO desalination. All SGW types showed better RO performance over seawater desalination. Furthermore, air oxidation of the SGW was accompanied with pH elevation, which increased the membrane fouling. Hence, keeping the feed water unexposed to atmospheric conditions for maintaining the natural reducing stage of the SGW is crucial for low fouling potential. The observed benefits of using naturally reduced SGW in RO desalination have significant implications for reduction in overall process costs.


Assuntos
Água Subterrânea , Purificação da Água , Membranas Artificiais , Osmose , Oxirredução , Água do Mar
9.
Sci Total Environ ; 732: 139249, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32438185

RESUMO

This study tests for the first time the long-term effects of pumping saline groundwater (SGW) as feed for a desalination plant on a coastal aquifer. Field measurements combined with 3D modeling of the hydrological conditions were conducted to examine the effects of SGW pumping on the aquifer system. The plant is next to the city of Almeria (South East Spain) and has been operating since 2006. It uses multiple beach wells along the shore to draw SGW from beneath the fresh-saline water interface (FSI) of the Andarax coastal aquifer. The long-term impact of the intensive pumping on the aquifer was assessed by electrical conductivity profiles in three observation wells during 12 years of pumping. The FSI deepened with continuous pumping, reaching a decrease of ~50 m in the observation well closest to the pumping wells. A calibrated three-dimensional numerical model of the Andarax aquifer replicates the freshening of the aquifer due to the continuous pumping, resulting in a salinity decrease of ~16% in the vicinity of the wells. The salinity decrease stabilizes at 17%, and the model predicts no further significant decrease in salinity for additional 20 years. Submarine groundwater discharge is lowered due to the SGW pumping and ~19,000,000 m3 of freshwater has not lost to the sea during the 12 years of pumping with a rate of ~1,100,000 m3 yr-1 after 6 years of pumping. After pumping cessation, hydrostatic equilibrium would take about 20 years to recover. This work presents the complex dynamics of the FSI due to the SGW pumping for desalination in the first real long-term scenario. It shows by combining field work and numerical modeling, a significant freshening of the aquifer by pumping SGW, emphasizing an additional advantage and the effectiveness of this use as a negative hydraulic barrier against seawater intrusion.

10.
Environ Sci Technol ; 54(12): 7354-7365, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32379434

RESUMO

Methanogenic archaea have been shown to reduce iron from ferric [Fe(III)] to ferrous [Fe(II)] state, but minerals that form during iron reduction by different methanogens remain to be characterized. Here, we show that zerovalent iron (ZVI) minerals, ferrite [α-Fe(0)] and austenite [γ-Fe(0)], appear in the X-ray diffraction spectra minutes after the addition of ferrihydrite to the cultures of a methanogenic archaeon, Methanosarcina barkeri (M. barkeri). M. barkeri cells and redox-active, nonenzymatic soluble organic compounds in organic-rich spent culture supernatants can promote the formation of ZVI; the latter compounds also likely stabilize ZVI. Methanogenic microbes that inhabit organic- and Fe(III)-rich anaerobic environments may similarly reduce Fe(III) to Fe(II) and ZVI, with implications for the preservation of paleomagnetic signals during sediment diagenesis and potential applications in the protection of iron metals against corrosion and in the green synthesis of ZVI.


Assuntos
Compostos Férricos , Methanosarcina barkeri , Ferro , Minerais , Oxirredução
11.
Sci China Life Sci ; 62(10): 1287-1295, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31209798

RESUMO

Anaerobic oxidation of methane (AOM) plays a crucial role in controlling global methane emission. This is a microbial process that relies on the reduction of external electron acceptors such as sulfate, nitrate/nitrite, and transient metal ions. In marine settings, the dominant electron acceptor for AOM is sulfate, while other known electron acceptors are transient metal ions such as iron and manganese oxides. Despite the AOM process coupled with sulfate reduction being relatively well characterized, researches on metal-dependent AOM process are few, and no microorganism has to date been identified as being responsible for this reaction in natural marine environments. In this review, geochemical evidences of metal-dependent AOM from sediment cores in various marine environments are summarized. Studies have showed that iron and manganese are reduced in accordance with methane oxidation in seeps or diffusive profiles below the methanogenesis zone. The potential biochemical basis and mechanisms for metal-dependent AOM processes are here presented and discussed. Future research will shed light on the microbes involved in this process and also on the molecular basis of the electron transfer between these microbes and metals in natural marine environments.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/química , Metais/química , Metano/química , Anaerobiose , Transporte de Elétrons , Nitratos/química , Oceanos e Mares , Oxirredução , Sulfatos/química , Termodinâmica , Água
12.
Water Res ; 156: 46-57, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30904710

RESUMO

Over the past few decades, seawater desalination has become a necessity for freshwater supply in many countries worldwide, particularly in arid and semi-arid regions. One potentially high-quality feed water for desalination is saline groundwater (SGW) from coastal aquifers, which has lower fouling propensity than seawater. This study examines the effect of pumping SGW from a phreatic coastal aquifer on fresh groundwater, particularly on the dynamics of the fresh-saline water interface (FSI). Initially, we constructed a 3D finite-element model of a phreatic coastal aquifer by using the FEFLOW software, which solves the coupled variable density groundwater flow and solute transport equations. Then, we compared and validated the results of the model to those of a field-scale pumping test. The model indicates that pumping SGW from a coastal aquifer freshens the aquifer and rehabilitates parts that were salinized due to seawater intrusion - an effect that increases with increasing pumping rate. In addition, when simultaneously pumping fresh groundwater further inland and SGW from below the FSI, the freshening effect is less pronounced and the salinity of the aquifer is more stable. In line with the results of the model, the field experiment revealed that salinity in the observation well decreases over the course of pumping. Taken together, our findings demonstrate that, in addition to providing a high-quality source feed water for desalination, pumping SGW does not salinize the aquifer and even rehabilitates it by negating the effect of seawater intrusion. These findings are important for planning shoreline desalination facilities and for managing arid coastal regions with lack of water supply and over exploited aquifers.


Assuntos
Água Subterrânea , Água Doce , Salinidade , Água do Mar , Abastecimento de Água
13.
Environ Sci Technol ; 51(21): 12293-12301, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28965392

RESUMO

Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.


Assuntos
Anaerobiose , Archaea , Metano , Sedimentos Geológicos , Ferro , Minerais , Oxirredução , Sulfatos
14.
Front Microbiol ; 8: 766, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529500

RESUMO

The competition between sulfate reducing bacteria and methanogens over common substrates has been proposed as a critical control for methane production. In this study, we examined the co-existence of methanogenesis and sulfate reduction with shared substrates over a large range of sulfate concentrations and rates of sulfate reduction in estuarine systems, where these processes are the key terminal sink for organic carbon. Incubation experiments were carried out with sediment samples from the sulfate-methane transition zone of the Yarqon (Israel) estuary with different substrates and inhibitors along a sulfate concentrations gradient from 1 to 10 mM. The results show that methanogenesis and sulfate reduction can co-exist while the microbes share substrates over the tested range of sulfate concentrations and at sulfate reduction rates up to 680 µmol L-1 day-1. Rates of methanogenesis were two orders of magnitude lower than rates of sulfate reduction in incubations with acetate and lactate, suggesting a higher affinity of sulfate reducing bacteria for the available substrates. The co-existence of both processes was also confirmed by the isotopic signatures of δ34S in the residual sulfate and that of δ13C of methane and dissolved inorganic carbon. Copy numbers of dsrA and mcrA genes supported the dominance of sulfate reduction over methanogenesis, while showing also the ability of methanogens to grow under high sulfate concentration and in the presence of active sulfate reduction.

15.
Environ Sci Technol ; 50(4): 1955-63, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26810309

RESUMO

Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs.


Assuntos
Água Potável , Água Subterrânea/química , Salinidade , Cloreto de Sódio/química , Purificação da Água/métodos , Osmose , Água do Mar/química
16.
Proc Natl Acad Sci U S A ; 111(40): E4139-47, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246590

RESUMO

Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with (13)C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organic carbon oxidation or in diffusive sedimentary sulfate-methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. These results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.

17.
FEMS Microbiol Ecol ; 87(3): 780-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24283503

RESUMO

During the 2011 exploration season of the EV Nautilus in the Mediterranean Sea, we conducted a multidisciplinary study, aimed at exploring the microbial populations below the sediment-water interface (SWI) in the hydrocarbon-rich environments of the Levantine basin. Two c. 1000-m-deep locations were sampled: sediments fueled by methane seepage at the toe of the Palmachim disturbance and a patch of euxinic sediment with high sulfide and methane content offshore Acre, enriched by hydrocarbon from an unknown source. We describe the composition of the microbial population in the top 5 cm of the sediment with 1 cm resolution, accompanied by measurements of methane and sulfate concentrations, and the isotopic composition of this methane and sulfate (δ¹³C(CH4), δ¹8O(SO4), and δ³4S(SO4)). Our geochemical and microbiological results indicate the presence of the anaerobic methane oxidation (AOM) coupled to bacterial sulfate reduction (BSR). We show that complex methane and sulfur metabolizing microbial populations are present in both locations, although their community structure and metabolic preferences differ due to potential variation in the hydrocarbon source.


Assuntos
Sedimentos Geológicos/microbiologia , Metano/metabolismo , Sulfatos/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Isótopos de Carbono/análise , DNA Arqueal/genética , DNA Bacteriano/genética , Sedimentos Geológicos/química , Mar Mediterrâneo , Oxirredução , Isótopos de Oxigênio/análise , Filogenia , Isótopos de Enxofre/análise
18.
PLoS One ; 8(10): e75883, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098403

RESUMO

We present coupled sulfur and oxygen isotope data from sulfur nodules and surrounding gypsum, as well as iron and manganese concentration data, from the Lisan Formation near the Dead Sea (Israel). The sulfur isotope composition in the nodules ranges between -9 and -11‰, 27 to 29‰ lighter than the surrounding gypsum, while the oxygen isotope composition of the gypsum is constant around 24‰. The constant sulfur isotope composition of the nodule is consistent with formation in an 'open system'. Iron concentrations in the gypsum increase toward the nodule, while manganese concentrations decrease, suggesting a redox boundary at the nodule-gypsum interface during aqueous phase diagenesis. We propose that sulfur nodules in the Lisan Formation are generated through bacterial sulfate reduction, which terminates at elemental sulfur. We speculate that the sulfate-saturated pore fluids, coupled with the low availability of an electron donor, terminates the trithionate pathway before the final two-electron reduction, producing thionites, which then disproportionate to form abundant elemental sulfur.


Assuntos
Fenômenos Geológicos , Microbiologia , Oceanos e Mares , Meio Ambiente , Israel , Isótopos de Oxigênio/química , Isótopos de Enxofre/química , Tiossulfatos/química
19.
Mar Pollut Bull ; 71(1-2): 250-8, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23485104

RESUMO

We studied the role of small, highly stratified, sulfate and nutrient enriched estuaries, as a source or sink of inorganic nitrogen species, using the Qishon estuary at the Mediterranean coast of Israel, as a case study. Measurements of nutrient concentrations, δ(15)N and δ(18)O of nitrate+nitrite, δ(13)CDIC and δ(18)OH2O were performed during 2008-2009 along the upper-fresh and lower-saline water masses, as well as sediment porewater depth-profiles. Such estuaries are characterized by relatively low removal flux of NO3(-) (via sedimentary denitrification) and enhanced (×3) upward flux of NH4(+) (via sulfate reduction), attributed to the penetration of seawater of low NO3(-) and high dissolved oxygen and sulfate concentrations. The role of such small estuaries in releasing dissolved inorganic nitrogen, especially in sensitive oligotrophic areas as the Levantine basin and in the long-term, as a result of enhanced seawater penetration due to the expected sea level rise, has important environmental policy implications.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Estuários , Israel , Poluição da Água/estatística & dados numéricos
20.
Environ Sci Technol ; 44(11): 4096-102, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20462268

RESUMO

This study proposes a hydrogeochemical tool to distinguish between salinization and freshening events of a coastal aquifer and quantifies their effect on groundwater characteristics. This is based on the chemical composition of the fresh-saline water interface (FSI) determined from combined field work, column experiments with the same sediments, and modeling. The experimental results were modeled using the PHREEQC code and were compared to field data from the coastal aquifer of Israel. The decrease in the isotopic composition of the dissolved inorganic carbon (delta(13)C(DIC)) of the saline water indicates that, during seawater intrusion and coastal salinization, oxidation of organic carbon occurs. However, the main process operating during salinization or freshening events in coastal aquifers is cation exchange. The relative changes in Ca(2+), Sr(2+), and K(+) concentrations during salinization and freshening events are used as a reliable tool for characterizing the status of a coastal aquifer. The field data suggest that coastal aquifers may switch from freshening to salinization on a seasonal time scale.


Assuntos
Cloreto de Sódio/química , Água/química , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...