Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 321: 117394, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967777

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Plasmodium falciparum multi-drug resistant (MDR) strains are a great challenge to global health care. This predicament implies the urgent need to discover novel antimalarial drugs candidate from alternative natural sources. The Himalaya constitute a rich repository of medicinal plants which have been used traditionally in the folklore medicine since ages and having no scientific evidence for their activity. Crambe kotschyana Boiss. and Eremurus himalaicus Baker are used for their antipyretic and hepatoprotective properties in Kinnaur district of Himachal Pradesh, India. AIM OF THE STUDY: This study would investigate the antiplasmodial efficacy of C. kotschyana and E. himalaicus extracts, their fractions and active components using in vitro, in vivo and in silico approaches to provide a scientific insight into their activity. METHODS: The methanol extracts of C. kotschyana (CKME) and E. himalaicus (EHME) were prepared by maceration followed by fractionation using ethyl acetate. The isolation of flavonoid glycosides isorhamnetin-3, 7-di-O-glucoside from C. kotschyana and luteolin-6-C-glucoside (isoorientin) from E. himalaicus was carried out by antiplasmodial activity-guided isolation. In vitro antimalarial activity was assessed by WHO method while in vitro cytotoxicity was ascertained employing the MTT assay. Molecular docking and molecular dynamics simulation were performed using the Glide module of Schrödinger Software and Gromacs-2022 software package respectively. In vivo curative activity was assessed by Ryley and Peters method. RESULTS: The methanol extracts of both the plants illustrated the best antiplasmodial activity followed by the ethyl acetate fractions. Iso-orientin (IC50 6.49 µg/ml) and Isorhamnetin-3,7-di-O-glucoside (IC50 9.22 µg/ml) illustrated considerable in vitro activity even against P. falciparum resistant strain. Extracts/fractions as well as the isolated compounds were found to be non-toxic with CC50 > 640 µg/ml. Molecular docking studies were performed with these 2 O-glucosides against four malaria targets to understand the binding pose of these molecules and the results suggested that these molecules have selectivity for lactate dehydrogenase enzyme. CKME and EHME exhibited curative activity in vivo along with increase in Mean Survival Time of mice. CONCLUSION: The research delineated the scientific evidence that both the therapeutic herbs possessed antimalarial activity and notably, bioactive compounds responsible to exhibit the antimalarial activity have been isolated, identified and characterized. Further studies are underway to assess the antiplasmodial efficacy of isolated compounds alone and in combination with standard antimalarials.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Metanol/uso terapêutico , Simulação de Acoplamento Molecular , Malária/tratamento farmacológico , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Glucosídeos/uso terapêutico
2.
Curr Top Med Chem ; 22(20): 1636-1653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35894474

RESUMO

BACKGROUND: Although water is regarded as a simple molecule, its ability to create hydrogen bonds makes it a highly complex molecule that is crucial to molecular biology. Water molecules are extremely small and are made up of two different types of atoms, each of which plays a particular role in biological processes. Despite substantial research, understanding the hydration chemistry of protein-ligand complexes remains difficult. Researchers are working on harnessing water molecules to solve unsolved challenges due to the development of computer technologies. OBJECTIVES: The goal of this review is to highlight the relevance of water molecules in protein environments, as well as to demonstrate how the lack of well-resolved crystal structures of proteins functions as a bottleneck in developing molecules that target critical therapeutic targets. In addition, the purpose of this article is to provide a common platform for researchers to consider numerous aspects connected to water molecules. CONCLUSION: Considering structure-based drug design, this review will make readers aware of the different aspects related to water molecules. It will provide an amalgamation of information related to the protein environment, linking the thermodynamic fingerprints of water with key therapeutic targets. It also demonstrates that a large number of computational tools are available to study the water network chemistry with the surrounding protein environment. It also emphasizes the need for computational methods in addressing gaps left by a poorly resolved crystallized protein structure.


Assuntos
Biologia Computacional , Água , Descoberta de Drogas , Ligantes , Proteínas/química , Água/química
3.
J Biomol Struct Dyn ; 40(11): 5079-5089, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413032

RESUMO

The COVID-19 pandemic is an ongoing global health emergency caused by a newly discovered coronavirus SARS-CoV-2. The entire scientific community across the globe is working diligently to tackle this unprecedented challenge. In silico studies have played a crucial role in the current situation by expediting the process of identification of novel potential chemotypes targeting the viral receptors. In this study, we have made efforts to identify molecules that can potentially inhibit the SARS-CoV-2 main protease (Mpro) using the high-resolution crystal structure of SARS-CoV-2 Mpro. The SARS-CoV-2 Mpro has a large flexible binding pocket that can accommodate various chemically diverse ligands but a complete occupation of the binding cavity is necessary for efficient inhibition and stability. We augmented glide three-tier molecular docking protocol with water thermodynamics to screen molecules obtained from three different compound libraries. The diverse hits obtained through docking studies were scored against generated WaterMap to enrich the quality of results. Five molecules were selected from each compound library on the basis of scores and protein-ligand complementarity. Further MD simulations on the proposed molecules affirm the stability of these molecules in the complex. MM-GBSA results and intermolecular hydrogen bond analysis also confirm the thermodynamic stability of proposed molecules. This study also presumably steers the structure determination of many ligand-main protease complexes using x-ray diffraction methods.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Cisteína Endopeptidases/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Termodinâmica , Proteínas não Estruturais Virais/química , Água
4.
Future Med Chem ; 13(17): 1435-1450, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34169728

RESUMO

The COVID-19 outbreak has thrown the world into an unprecedented crisis. It has posed a challenge to scientists around the globe who are working tirelessly to combat this pandemic. We herein report a set of molecules that may serve as possible inhibitors of the SARS-CoV-2 main protease. To identify these molecules, we followed a combinatorial structure-based strategy, which includes high-throughput virtual screening, molecular docking and WaterMap calculations. The study was carried out using Protein Data Bank structures 5R82 and 6Y2G. DrugBank, Enamine, Natural product and Specs databases, along with a few known antiviral drugs, were used for the screening. WaterMap analysis aided in the recognition of high-potential molecules that can efficiently displace binding-site waters. This study may help the discovery and development of antiviral drugs against SARS-CoV-2.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus/química , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/farmacocinética , Antivirais/uso terapêutico , Sítios de Ligação/efeitos dos fármacos , Catálise , Simulação por Computador , Bases de Dados Factuais , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteases/farmacocinética , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...