Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1128528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082215

RESUMO

Introduction: Due to loss in musculoskeletal capacity, there is an increased burden on the residual limbs of bilateral transfemoral and through-knee persons with limb loss. This reduced capacity is associated with an increased cost of walking that is detrimental to functionality. Compensatory gait strategies are adopted by this population. However, how these strategies relate to specific muscle recruitment is not known. The primary aim of this study is to characterize muscle recruitment during gait of this population. The secondary aim is to assess whether the measured kinematics can be actuated when the endurance of specific muscles is reduced and if this is the case, which alternative muscles facilitate this. Methods: 3D gait data and high-resolution magnetic resonance images were acquired from six bilateral transfemoral and through-knee persons with limb loss. Subject-specific anatomical muscle models were developed for each participant, and a validated musculoskeletal model was used to quantify muscle forces in two conditions: during normal gait (baseline) and when muscles, which were identified as functioning above a "healthy" level at baseline, have a reduced magnitude of maximum force capacity (reduced endurance simulation). To test the hypothesis that there are differences in muscle forces between the baseline trials and the simulations with reduced muscular endurance, a Bonferroni corrected two-way ANOVA with repeated measures was completed between the two states. Results: The baseline analysis showed that the hip flexors experience relatively high muscle activations during gait. The reduced endurance simulation found two scenarios. First, for 5 out of the 12 simulations, the baseline kinematics could not be reproduced with the reduced muscular capacity. Second, for 7 out of 12 cases where the baseline kinematics were achieved, this was possible with compensatory increased activation of some muscles with similar functions (p ≤ 0.003). Discussion: Evidently, due to the loss of the ankle plantar flexors, gait imposes a high demand on the flexor muscle group of the residual limb. This study highlights how the elevated cost of gait in this population manifests in muscle recruitment. To enhance functionality, it is critical to consider the mechanical demand on the hip flexors and to develop rehabilitation interventions accordingly.

2.
J Biomech ; 149: 111484, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791515

RESUMO

Amputation imposes significant challenges in locomotion to millions of people with limb loss worldwide. The decline in the use of the residual limb results in muscle atrophy that affects musculoskeletal dynamics in daily activities. The aim of this study was to quantify the lower limb muscle volume discrepancy based on magnetic resonance (MR) imaging and to combine this with motion analysis and musculoskeletal modelling to quantify the effects in the dynamics of key activities of daily living. Eight male participants with traumatic unilateral transtibial amputation were recruited who were at least six months after receiving their definitive prostheses. The muscle volume discrepancies were found to be largest at the knee extensors (35 %, p = 0.008), followed by the hip abductors (17 %, p = 0.008). Daily activities (level walking, standing up from a chair and ascending one step) were measured in a motion analysis laboratory and muscle and joint forces quantified using a detailed musculoskeletal model for people with unilateral transtibial amputation which was calibrated in terms of the muscle volume discrepancies post-amputation at a subject-specific level. Knee extensor muscle forces were lower at the residual limb than the intact limb for all activities (p ≤ 0.008); residual limb muscle forces of the hip abductors (p ≤ 0.031) and adductors (p ≤ 0.031) were lower for standing-up and ascending one step. While the reduced knee extensor force has been reported by other studies, our results suggest a new biomechanically-based mitigation strategy to improve functional mobility, which could be achieved through strengthening of the hip abd/adductor muscles.


Assuntos
Amputados , Membros Artificiais , Humanos , Masculino , Atividades Cotidianas , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Amputação Cirúrgica , Caminhada/fisiologia , Atrofia Muscular
3.
J Biomech ; 125: 110599, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34265657

RESUMO

Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninjured individuals. The aim of this study was to quantify the lower limb muscle parameters of persons with transtibial and transfemoral amputations using high resolution MRI to ascertain muscle volume and to determine regression equations for predicting muscle volume using femur- and tibia-length, pelvic-width, height, and mass. Twelve persons with limb loss participated in this study and their data were compared to six matched control subjects. Subjects with unilateral transtibial amputation showed whole-limb muscle volume loss in the residual-limb, whereas minor volume changes in the intact limb were found, providing evidence for a compensation strategy that is dominated by the intact-limb. Subjects with bilateral-transfemoral amputations showed significant muscle volume increases in the short adductor muscles with an insertion not affected by the amputation, the hip flexors, and the gluteus medius, and significant volume decreases in the longer adductor muscles, rectus femoris, and hamstrings. This study presents a benchmark measure of muscle volume discrepancies in persons with limb-loss, and can be used to understand the compensation strategies of persons with limb-loss and the impact on muscle volume, thus enabling the development of optimised intervention protocols, conditioning therapies, surgical techniques, and prosthetic devices that promote and enhance functional capability within the population of persons with limb loss.


Assuntos
Amputados , Membros Artificiais , Amputação Cirúrgica , Humanos , Extremidade Inferior , Músculo Esquelético/diagnóstico por imagem
4.
Arch Rehabil Res Clin Transl ; 1(1-2): 100007, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33543047

RESUMO

OBJECTIVE: This systematic review aims to evaluate current literature for the prevalence, causes, and effect of low back pain (LBP) in traumatic lower limb amputees, specifically its association with the kinematics and kinetics of the lumbar spine and lower extremities. DATA SOURCES: Databases (EMBASE, MEDLINE, Scopus, CINAHL, PsycINFO) were searched systematically for eligible studies from inception to January 2018. STUDY SELECTION: The inclusion terms were synonyms of low back pain, lower limb amputation, and trauma, whereas studies involving nontraumatic amputee populations, single cases, or reviews were excluded. 1822 studies were initially identified, of which 44 progressed to full-text reading, and 11 studies were included in the review. DATA EXTRACTION: Two independent reviewers reviewed the included studies, which were evaluated using a quality assessment tool and the Grades of Recommendation, Assessment, Development and Evaluation system for risk of bias, prior to analyzing results and conclusions. DATA SYNTHESIS: There was an LBP prevalence of 52%-64% in traumatic amputees, compared to 48%-77% in the general amputee population (predominantly vascular, tumor, trauma), attributed to a mixture of biomechanical, psychosocial, and personal factors. These factors determined the presence, frequency, and severity of the pain in the amputees, significantly affecting their quality of life. However, little evidence was available on causality. CONCLUSION: The high prevalence of LBP in traumatic amputees highlights the necessity to advance research into the underlying mechanics behind LBP, specifically the spinal kinematics and kinetics. This may facilitate improvements in rehabilitation, with the potential to improve quality of life in traumatic amputees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...