Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13428, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862528

RESUMO

Evaluating drought parameters at the basin level is one of the fundamental processes for planning sustainable crop production. This study aimed to evaluate both short-term and long-term meteorological drought parameters within the Vaippar Basin, located in southern India, by employing the standardized precipitation index (SPI). Gridded rainfall values developed from 13 rain gauge stations were employed to calculate the SPI values. Drought parameters, encompassing occurrence, intensity, duration, frequency, and trends, were assessed for both short-term and long-term droughts. The study findings indicated that the occurrence of short-term drought was 51.7%, while that of long-term drought was 49.82%. Notably, the basin experienced extreme short-term droughts in 1980, 1998 and 2016 and long-term droughts in 1981, 2013, and 2017. Utilizing an innovative trend identification method for SPI values, a significant monotonic upwards trend was identified in October and December for short-term drought and in December for long-term drought. This study defined the minimum threshold rainfall, which represents the critical amount required to prevent short-term drought (set at 390 mm) and long-term drought (set at 635 mm). The drought severity recurrence curves developed in this study indicate that when the SPI values fall below - 1.0, short-term drought affects 25% of the basin area, while long-term drought impacts 50% of the basin area at a 20-year recurrence interval. Additionally, the drought hazard index (DHI), which combines drought intensity and severity, demonstrated higher values in the northwestern regions for short-term drought and in the southern areas for long-term drought. The study's findings, highlighting areas of drought vulnerability, severity, and recurrence patterns in the basin, direct the attention for timely intervention when drought initiates.

2.
3 Biotech ; 14(7): 180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38882641

RESUMO

The translocation of heavy metals (HMs) from the rhizosphere to plant systems constitutes a fundamental mechanism governing HM uptake. Microbial augmentation has emerged as a promising strategy to enhance this process. The study investigates the mechanism of enhanced translocation of heavy metals (HMs) from artificially polluted soil to Chrysopogon zizanioides, facilitated by Bacillus xiamenensis VITMSJ3. Pb, Ni, and Cd translocation to the roots and shoots of C. zizanioides was examined, revealing a significant increase of over 15% in HM uptake upon treatment with Bacillus xiamenensis VITMSJ3 (Accession number MT822866). VITMSJ3 exhibited biofilm formation capabilities, attributed to quorum sensing molecule production, and demonstrated resistance to Pb and Ni upto 4000 ppm and Cd upto 450 ppm, respectively. Moreover, VITMSJ3 displayed plant growth-promoting bacterial (PGPB) traits such as, indole-3-acetic acid (IAA), phosphate, ammonia, siderophore, and hydrogen cyanide (HCN) production. Amplification of candidate genes responsible for HM resistance (pbr for Pb, ncc for Ni, cadA for Cd) corroborated the genetic basis of resistance. SEM-EDAX micrographs confirmed HM uptake and translocation along with the presence of VITMSJ3. Enzymatic analysis revealed the synthesis of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), peroxidase (POD), and ascorbate peroxidase (APX), implicating their involvement in ROS detoxification. Overall, the study underscores the efficacy of B. xiamenensis VITMSJ3 in enhancing HM translocation, thereby elucidating its potential for phytoremediation applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04001-x.

3.
Food Chem Toxicol ; 177: 113830, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182598

RESUMO

Increased urbanization in recent years has let to discharge of heavy metals into the environment which has caused severe impacts on soil as well as water. Therefore the current study was aimed to assess the toxicity of lead (Pb), nickel (Ni), and cadmium (Cd) from the contaminated water using zebra fish Danio rerio and detoxification of metals upon augmentation with Bacillus xiamenensis. Exposure doses till 150 mg L-1 of Pb, Ni and Cd in water showed lethal effects on fish. Similarly the histopathological analysis showed severe tissue disruption in the gills and liver which were less upon supplementation with bacterial strain VITMSJ3. On the 20th day, the uptake concentration of Pb, Ni and Cd in zebra fish was found to be 87 mg L-1, 89 mg L-1 and 91 mg L-1 respectively with VITMSJ3, from the water. Antioxidant enzymatic activities showed an increase upon bacterial supplementation, which reduced the oxidative stress. Further SEM-EDAX analysis confirmed the presence of Pb, Ni and Cd ions adsorbed on the gills. The results clearly showed less oxidative damages in fish with increased head and reduced tail%. Overall, the results showed a significant difference (p < 0.05) among the treatments compared with the control.


Assuntos
Cádmio , Metais Pesados , Animais , Cádmio/toxicidade , Níquel/toxicidade , Peixe-Zebra , Chumbo/toxicidade , Metais Pesados/toxicidade , Estresse Oxidativo , Bactérias , Mecanismos de Defesa
4.
Environ Sci Pollut Res Int ; 30(20): 58967-58985, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37002522

RESUMO

Lead (Pb), nickel (Ni), and cadmium (Cd) are known for its harmful effects on the environment. Microbial community related to soil plays a pivotal role in configuring several properties of the ecosystem. Thus, remediation of such heavy metals using multiple biosystems had shown excellent bioremoval potential. The current study demonstrates the integrated approach of Chrysopogon zizanioides in combination with earthworm Eisenia fetida augmented with VITMSJ3 potent strain for the uptake of metals like Pb, Ni, and Cd from the contaminated soil. For the uptake of heavy metals, Pb, Ni, and Cd with the concentrations of 50, 100, and 150 mg kg-1 were supplemented in pots with plants and earthworms. C. zizanioides was used for bioremoval due to their massive fibrous root system which can absorb heavy metals. A substantial increase of 70-80% Pb, Ni, and Cd was found for VITMSJ3 augmented setup. A total of 12 earthworms were introduced in each setup and were tested for the toxicity and damages in the various internal structures. Reduction in malondialdehyde (MDA) content was observed in the earthworms with VITMSJ3 strain proving less toxicity and damages. Metagenomic analysis of the soil associated bacterial diversity was assessed by amplifying the V3V4 region of the 16S rRNA gene and the annotations were studied. Firmicutes were found to be the predominant genus with 56.65% abundance in the bioaugmented soil R (60) proving the detoxification of metals in the bioaugmented soil. Our study proved that a synergistic effect of plant and earthworm in association with potent bacterial strain had higher uptake of Pb, Ni, and Cd. Metagenomic analysis revealed the changes in microbial abundance in the soil before and after treatment.


Assuntos
Metais Pesados , Microbiota , Oligoquetos , Poluentes do Solo , Animais , Cádmio/análise , Níquel/análise , Chumbo/análise , RNA Ribossômico 16S , Metais Pesados/análise , Biodegradação Ambiental , Bactérias , Solo/química , Poluentes do Solo/análise
5.
J Sci Food Agric ; 100(1): 154-160, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31471908

RESUMO

BACKGROUND: Active optical crop sensors have been gaining importance to determine in-season nitrogen (N) fertilization requirements for on-the-go variable rate applications. Although most of these active in-field crop sensors have been evaluated in maize (Zea mays L.) and wheat (Triticum aestivum L. emend. Thell.), these sensors have not been evaluated in soybean [Glycine max (L.) Merr.] production systems in North Dakota, USA. Recent research from both South Dakota and North Dakota, USA indicate that in-season N application in soybean can increase soybean yield under certain conditions. RESULTS: The study revealed that OptRx™ sensor reading did not show any significant differences from early to midway through the growing season. The NDRE (normalized difference red edge) index data collected towards the end of the growing season showed significantly higher values for some of the N treatments as compared to others in both years. The NDRE values were strongly correlated to grain yield for both years under tiled (r = 0.923) and non-tiled (r = 0.901) drainage conditions. Certain soybean varieties displayed significantly higher NDRE values over both years. The three varieties tested across years, under both tiled and non-tiled conditions, showed a significant linear relationship between late August NDRE values and yield (R2  = 0.85 for tiled and R2  = 0.81 for non-tiled). CONCLUSION: In this research, the study results show that the OptRx™ sensor has the potential to work for soybean as well, though later in the crop growing season. Further investigation is needed to confirm the use of OptRx™ sensor for variable rate in-season N applications in soybeans. © 2019 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Glycine max/metabolismo , Nitrogênio/análise , Produção Agrícola/instrumentação , Fertilizantes/análise , Nitrogênio/metabolismo , Estações do Ano , Glycine max/química , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...