Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 4013, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256732

RESUMO

Herein, we report various physico-chemical approaches to probe the nature of the interface between few layers graphene (FLG) and carboxylated nitrile rubber (XNBR) nanocomposites prepared through efficient blending of XNBR latex with an aqueous dispersion of FLG. The extent of physical interaction between FLG and XNBR was investigated using Lorentz-Park and Cunneen-Russell models. The chemical interface between FLG and sulfur crosslinked XNBR was studied using model reactions between sulfur and graphene in presence of zinc 2-mercaptobenzothiazole (ZMBT). We propose that an edge sulfurated FLG is formed, which could chemically bond with XNBR during the vulcanization process. Density Functional Theory (DFT) was employed to unravel the mechanistic insights, which support this hypothesis and suggest a kinetically favorable sulfuration of both XNBR and FLG. The formation of a chemical bond between edge-FLG and XNBR through the proposed intermediacy of sulfurated FLG leads to the observed improvement in mechanical properties of the nanocomposites.

2.
ACS Omega ; 7(11): 9118-9129, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35350312

RESUMO

Well-defined six-arm star-branched bio-degradable block copolymers of l-lactide and ε-caprolactone were prepared using controlled ring-opening polymerization and a sequential monomer addition method using dipentaerythritol as the initiator core and organocatalysts at low temperatures in solution. Sequence of enchainment was changed by reversing the order of monomer addition giving, either, a crystalline PLA block or an amorphous PCL block as the outer segment. Well-defined six-arm poly(ε-caprolactone-b-l-lactide, 6s-PCL-b-PLA) block copolymers were obtained with a range of segment molecular weights. However, in the case of six-arm poly(l-lactide-b-ε-caprolactone, 6s-PLA-b-PCL), disruption of the block structure was observed on account of competing transesterification reactions accompanying a chain-growth reaction. Such sequence-controlled block copolymers showed interesting phase morphologies, as evidenced by differential scanning calorimetry (DSC) studies. 6s-PCL-b-PLA showed two glass-transition temperatures and two melting temperatures characteristic of the amorphous and crystalline blocks. 6s-PCL-b-PLA and 6s-PLA-b-PCL with different segment chain lengths were solution blended (10 wt %) with a commercially sourced PLA. All the blends were highly transparent. The structure and properties of the blend were examined by DSC, measurement of mechanical properties, and scanning electron microscopy. The results show that a phase-separated 6s-PCL-b-PLA copolymer results in two- to three-fold improvement in tensile toughness without the loss of modulus. A possible hypothesis for the mechanism of tensile toughness in the blend has been proposed.

3.
Sci Rep ; 8(1): 11228, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046158

RESUMO

The success of developing graphene based biomaterials depends on its ease of synthesis, use of environmentally benign methods and low toxicity of the chemicals involved as well as biocompatibility of the final products/devices. We report, herein, a simple, scalable and safe method to produce defect free few layers graphene using naturally available phenolics i.e. curcumin/tetrahydrocurcumin/quercetin, as solid-phase exfoliating agents with a productivity of ∼45 g/batch (D/G ≤ 0.54 and D/D' ≤ 1.23). The production method can also be employed in liquid-phase using a ball mill (20 g/batch, D/G ≤ 0.23 and D/D' ≤ 1.12) and a sand grinder (10 g/batch, D/G ≤ 0.11 and D/D∼ ≤ 0.78). The combined effect of π-π interaction and charge transfer (from curcumin to graphene) is postulated to be the driving force for efficient exfoliation of graphite. The yielded graphene was mixed with the natural rubber (NR) latex to produce thin film nanocomposites, which show superior tensile strength with low modulus and no loss of % elongation at break. In-vitro and in-vivo investigations demonstrate that the prepared nanocomposite is biocompatible. This approach could be useful for the production of materials suitable in products (gloves/condoms/catheters), which come in contact with body parts/body fluids.

4.
ACS Omega ; 3(12): 18714-18723, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30613821

RESUMO

Poly(glycerol sebacate) (PGS), produced from renewable monomers such as sebacic acid and glycerol, has been explored extensively for various biomedical applications. However, relatively less attention has been paid to explore PGS as sustainable materials in applications such as elastomers and rigid plastics, primarily because of serious deficiencies in physical properties of PGS. Here, we present two new approaches for enhancing the properties of PGS; (i) synthesizing block copolymers of PGS with poly(tetramethylene oxide)glycol (PTMO) and (ii) preparing a blend of PGS-b-PTMO with a poly(ester-ether) thermoplastic elastomer. The consequence of molar ratio (hard and soft segments) and M n of soft segment on tensile properties of the material was investigated. The PGS-b-PTMO with 25:75 mole ratios of hard and soft segments and having a medium M n soft segment (5350 g mol-1) exhibits an appreciable increase in percentage of elongation that is from 32% for PGS to 737%. Blends of PGS-b-PTMO and a thermoplastic polyester elastomer, Hytrel 3078, form a semi-interpenetrated polymer network, which exhibits increased tensile strength to 2.11 MPa and percentage of elongation to 2574. An elongation of such magnitude is unprecedented in the literature for predominantly aliphatic polyesters and demonstrates that the simple polyester can be tailored for superior performance.

5.
Carbon N Y ; 119: 527-534, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28775386

RESUMO

Commercially useful rubber products viz. gloves, condoms, tyres, and rubber hoses used in high temperature environments, etc., require efficient thermal conductivity, which increases the lifetime of these products. Graphene can fetch this property, if it is effectively incorporated into the rubber matrix. The great challenge in preparing graphene-rubber nanocomposites is formulating a scalable method to produce defect free graphene and its homogeneous dispersion into polymer matrices through an aqueous medium. Here, we used a simple method to produce defect free few layer (2-5) graphene, which can be easily dispersed into natural rubber (NR) latex without adversely affecting its colloidal stability. The resulting new composite showed large increase in thermal conductivity (480-980%) along with 40% increase in tensile properties and 60% improvement in electrical conductivity. This study provides a novel and generalized approach for the preparation of graphene based thermally conductive rubber nanocomposites.

7.
Biotechnol Prog ; 20(6): 1840-6, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15575720

RESUMO

The synthesis of polyurethane microsphere-gold nanoparticle "core-shell" structures and their use in the immobilization of the enzyme endoglucanase are described. Assembly of gold nanoparticles on the surface of polymer microspheres occurs through interaction of the nitrogens in the polymer with the nanoparticles, thereby precluding the need for modifying the polymer microspheres to enable such nanoparticle binding. Endoglucanse could thereafter be bound to the gold nanoparticles decorating the polyurethane microspheres, leading to a highly stable biocatalyst with excellent reuse characteristics. The immobilized enzyme retains its biocatalytic activity and exhibits improved thermal stability relative to free enzyme in solution. The high surface area of the host gold nanoparticles renders the immobilized enzyme "quasi free", while at the same time retaining advantages of immobilization such as ease of reuse, enhanced temporal and thermal stability, etc.


Assuntos
Celulase/química , Celulase/ultraestrutura , Materiais Revestidos Biocompatíveis/química , Ouro/química , Nanotubos/química , Nanotubos/ultraestrutura , Poliuretanos/química , Adsorção , Catálise , Ativação Enzimática , Estabilidade Enzimática , Enzimas Imobilizadas/química , Reutilização de Equipamento , Teste de Materiais , Microesferas , Tamanho da Partícula , Ligação Proteica
8.
Chem Rev ; 96(3): 951-976, 1996 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-11848777
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...