Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 1): 132792, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38834110

RESUMO

Many terpyridines and their metal complexes are known to exhibit remarkable potential for the interaction of biological targets. Notably, a subtle change in the structure of the ligand can influence these interactions significantly. In this regard, it would be very interesting to assess the binding affinity of functionalized molecules with DNA/BSA. In this work, a novel ester-based terpyridine (L) and the corresponding four metal complexes with Ni(II) (MC1), Cu(II) (MC2), Fe(III) (MC3) and Ru(III) (MC4) were prepared and structurally characterized using various spectroscopic and analytical techniques including the validation of molecular structures of ligand (L) and Ni(II)-Tpy complex (MC1). The EPR data demonstrate that MC1 is diamagnetic and other complexes (MC2-MC4) exhibit paramagnetic behavior. Additionally, the structures of ligands and metal complexes were determined using DFT studies and the same were utilized for the docking studies. Interestingly, MC3 and MC4 exhibit a predominant lowest binding energy of -9.62 Kcal/mol (with DNA) and -10.05 Kcal/mol (with BSA) respectively. The binding affinity of the ligand and its complexes with protein and DNA was evaluated by spectroscopic techniques. Notably, the cytotoxicity studies of L and MC1-MC4 were performed against the MCF-7 (human breast cancer) cell lines. The complex MC4 displayed great activity with an IC50 of 3.5 ±â€¯1.75 µM among all synthesized compounds and comparable with cisplatin.

2.
J Inorg Biochem ; 257: 112553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759263

RESUMO

The present work demonstrates the synthesis, structural diversity and coordination behavior of some selected new Ni(II)-Tpy complexes. The structural analysis revealed the coordination of the selected terpyridine ligands with the core metal atom in two different modes via dimeric species (1:1 fashion) through the Cl-bridging and a bis(Tpy)-Ni complex (2:1 fashion). Perhaps the most striking manifestations of these Ni(II)-Tpy complexes are BSA/DNA binding ability and anticancer activity. In addition, the cytotoxicity studies of Tpy ligand (4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 5-methylthiophene-2-carboxylate) and the Ni(II) complexes were carried out using lung cancer cell line (A549), breast cancer cell line (MCF-7) and normal cell line (Vero cell). The cytotoxicity results were compared with the cisplatin control group. Notably, bis-terpyridyl complex 3C (R = 4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 4-isopropoxybenzoate) demonstrates better activity with the IC50 value of 23.13 ± 3 µm for A549 and 22.7 ± 3 for MCF-7. The DFT calculations reveal the significant energy differences of HOMO and LUMO for the ligands and their corresponding Ni(II) complexes. The Tpy ligands and Ni(II)-Tpy complexes were investigated for BSA binding and further all the Ni(II) complexes were analyzed for DNA binding studies.


Assuntos
Antineoplásicos , Complexos de Coordenação , DNA , Níquel , Piridinas , Soroalbumina Bovina , Humanos , Níquel/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , DNA/metabolismo , DNA/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Piridinas/química , Piridinas/farmacologia , Células A549 , Células MCF-7 , Animais , Bovinos
3.
Org Biomol Chem ; 21(4): 673-699, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36602117

RESUMO

Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.

4.
Environ Sci Pollut Res Int ; 30(12): 35450-35477, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534248

RESUMO

Textile effluent is one of the most hazardous industrial pollutant sources. It is generated in huge volumes and contains a wide array of toxicants. Reactive azo dyes, which are xenobiotic compounds, are predominantly utilized by textile industries for dyeing cotton, viscose, wool, and silk. The conventional physicochemical treatments used by industrial effluent treatment plants are ineffective in dye degradation. The present study thus attempted to find a potential treatment for reactive azo dyes. A novel bacterial consortium VITPBC6 was constructed with the most potent and compatible reactive orange 16 (RO-16) decolorizing isolates of tannery and textile effluents, and the isolates were identified as Bacillus flexus VITSP6, Bacillus paraflexus VITSPB7, Bacillus megaterium VITSPB9, Bacillus firmus VITEPB1, B. flexus VITEPB2, and Bacillus aryabhattai VITEPB3. The physicochemical factors of RO-16 decolorization were optimized by response surface methodology. Consortium VITPBC6 was able to tolerate a high concentration of RO-16 up to 800 mg L-1. A cocktail of enzymes including azoreductase, tyrosinase, laccase, lignin peroxidase, and manganese peroxidase was involved in RO-16 degradation by VITPBC6. Consortium VITPBC6 degraded RO-16 following zero-order reaction. The enzymes of consortium VITPBC6 had a Vmax of 352 mg L-1 day-1 for RO-16 degradation; however, the Km value was high. VITPBC6 biodegraded RO-16 resulting in the formation of small aromatic compounds. Lastly, different toxicity assays conducted with untreated RO-16 and its corresponding biodegraded metabolite revealed that the toxicity of biodegraded metabolites was significantly lower than the untreated dye.


Assuntos
Compostos Azo , Bactérias , Animais , Biodegradação Ambiental , Cinética , Bactérias/metabolismo , Compostos Azo/química , Corantes/química , Indústria Têxtil
5.
Chem Biodivers ; 19(12): e202200662, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36261320

RESUMO

The inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) protein could be a promising treatment for breast cancer. In this regard, docking studies were accomplished on various functionalized organic molecules. Among them, several derivatives of quinazolin-4(1H)-one exhibited anti-breast cancer activity and satisfied the drug likeliness properties. Further, the in vitro inhibitory studies by a series of 2-(2-phenoxyquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-one molecules showed strong anti-cancer activity than the currently available drug, wortmannin. The MTT cytotoxicity assay was used to predict the anti-proliferative activity of these drugs against MCF-7 cancer cells by inhibiting the PIK3CA protein. The dose-dependent analysis showed a striking decrease in cancer cell viability at 24 h with inhibitory concentrations (IC50 ) of 3b, 3c, 3d, 3f and 3m are 15±1, 17±1, 8±1, 10±1 and 60±1 (nanomoles), respectively. This is the first report in the literature on the inhibition of PIK3CA protein by quinazolinone derivatives that can be used in the treatment of cancer. Quinazolinone analogs have the potential to be safe and economically feasible scaffolds if they are produced using a chemical technique that is both straightforward and amenable to modification. From the cancer research perspective, this study can eventually offer better care for cancer patients.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Relação Estrutura-Atividade , Proliferação de Células , Simulação de Acoplamento Molecular , Antineoplásicos/química , Quinazolinonas , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga
6.
Top Curr Chem (Cham) ; 380(5): 34, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35737142

RESUMO

The molecules possessing triazine and tetrazine moieties belong to a special class of heterocyclic compounds. Both triazines and tetrazines are building blocks and have provided a new dimension to the design of biologically important organic molecules. Several of their derivatives with fine-tuned electronic properties have been identified as multifunctional, adaptable, switchable, remarkably antifungal, anticancer, antiviral, antitumor, cardiotonic, anti-HIV, analgesic, anti-protozoal, etc. The objective of this review is to comprehensively describe the recent developments in synthesis, coordination properties, and various applications of triazine and tetrazine molecules. The rich literature demonstrates various synthetic routes for a variety of triazines and tetrazines through microwave-assisted, solid-phase, metal-based, [4+2] cycloaddition, and multicomponent one-pot reactions. Synthetic approaches contain linear, angular, and fused triazine and tetrazine heterocycles through a combinatorial method. Notably, the triazines and tetrazines undergo a variety of organic transformations, including electrophilic addition, coupling, nucleophilic displacement, and intramolecular cyclization. The mechanistic aspects of these heterocycles are discussed in a detailed way. The bioorthogonal application of these polyazines with various strained alkenes and alkynes provides a new prospect for investigations in chemical biology. This review systematically encapsulates the recent developments and challenges in the synthesis and possible potential applications of various triazine and tetrazine systems.


Assuntos
Alcenos , Triazinas , Alcenos/química , Alcinos , Ciclização , Reação de Cicloadição , Triazinas/química
7.
Dalton Trans ; 50(41): 14706-14713, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34585704

RESUMO

A simple and reliable colorimetric probe N,N'-bis-(4-diethylamino-2-hydroxybenzylidene)-1,10-phenanthroline-2,9-carbohydrazide (L) has been synthesised by reacting 4-(diethylamino)salicylaldehyde with 1,10-phenanthroline-2,9-dicarbohydrazide. The sensing ability of L was studied by its interactions with various f-block metal ions and other selected metal ions from s- and d-block by colorimetry, UV-visible spectrophotometry, and smartphone integrated red-green-blue (RGB) model in DMSO : H2O (7 : 3, v/v). The pale-yellow colour of L turns to wine-red upon interaction with uranyl ions (UO22+) and yellow-orange in the presence of Th4+, Zr4+, Fe3+, and Lu3+ ions. Other tested metal ions did not show any colour change of L. This color change offered a simple, quick, and consistent method for the selective and sensitive visual detection of trace levels of UO22+ ions without any need for sophisticated instruments. Sensor L exhibits two absorption bands at 358 and 389 nm due to ligand-to-ligand charge transfer (LLCT). Upon interaction of L with UO22+ and Th4+ ions, absorption bands are exhibited at 480 nm and 422 nm, respectively, due to ligand-to-metal charge transfer (LMCT). The UV-vis spectral studies indicated the formation of a 1 : 2 ligand-to-metal complex between L and UO22+ with an estimated association constant of 1.0 × 104 M-2. Using L, the concentration of UO22+ can be detected as low as 73 nM and 150 nM by spectrophotometry and RGB methods, respectively, without any interference from other tested ions with an RSD < 5% (n = 3). The binding mechanism was studied by 1H NMR titration, ESI mass, and FT-IR spectral analysis and was well supported by theoretical results. Overall, sensor L demonstrates promising analytical applicability for the detection of UO22+ ions in a semi-aqueous medium.

8.
Top Curr Chem (Cham) ; 379(3): 19, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33829312

RESUMO

Chitosan is a very well-known biocompatible and biodegradable polysaccharide consisting of ß-(1-4)-linked glucosamine units, derived from the deacetylation of chitin. This unique biopolymer consists of primary amines as well as hydrophilic hydroxyl groups along with the chitosan backbone and has exceptional properties and wide applications. Numerous articles have been devoted to the preparation and properties of chitosan-based biomaterials, which have been demonstrated as beads, films, fibers (2D-scaffolds), gels, sponges (3D-scaffolds), and wound-healing materials. The unusual adsorption capacity of chitosan cross-linked polymer is demonstrated by trapping cations, anions, organic dyes, and pharmaceutical ingredients from wastewater. The most striking manifestations of flexibility in the preparation of these adsorbents have been critically reviewed, and their sorption efficiencies compared. Notably, these materials are also used as drug delivery carriers. Further, various metal-loaded chitosan-based nanocomposite materials have been used efficiently in organic catalytic reactions. As per the rich literature survey, such chitosan-based materials warrant further research due to their abundance, eco-friendliness, and effectiveness towards commercialization. The biotechnological aspects of chitosan may lead to promising low-cost materials and by-products of industrial and agricultural significance. The constant demand for potential adsorbents for the removal of pollutants, can be met by fine-tuning the structural properties of chitosan with appropriate cross-linkers or additives.


Assuntos
Quitosana/química , Poluentes Ambientais/isolamento & purificação , Adsorção , Configuração de Carboidratos , Quitosana/síntese química , Poluentes Ambientais/química
9.
3 Biotech ; 11(1): 33, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33457167

RESUMO

There is a colossal demand for natural pigments and its applications in recent times. In the study, a novel lactone pigment was isolated from a predominant endophytic fungus residing in Bixa orellana L. (Bixaceae) leaves. The endophyte was identified as Fusarium verticillioides through morphological and molecular investigations. The optimum growth parameters of the endophyte for pigment production were at 33 ºC with pH 6.5 in dark. Through comprehensive spectroscopic studies, the structure of the isolated lactone was resolved and identified as (E)-3, 3-dimethyl-4-(pent-1-en-1-yl)-4-propyldihydrofuran-2(3H)-one. The acute oral toxicity study of the pigment investigated upon female Wistar rats indicated the median lethal dose (LD50) value above 1000 mg/kg body weight affirming safety. Thus, the red pigment from the isolated endophyte may be employed as a sustainable source for natural colorant in industries owing to its non-toxicity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02566-x.

10.
Analyst ; 145(13): 4615-4626, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451517

RESUMO

With an aim towards the design of efficient and straightforward fluorescent probes for hydrazine, the synthesis of (2-acetoxyaryl) methylene diacetate derivatives (1-4) was carried out by reacting substituted aromatic α-hydroxy aldehydes with acetyl chloride and sodium acetate in excellent yields. As a preliminary investigation, the ability of probe 1 was examined for the detection of substituted aliphatic and aromatic amines, amino acids, and other ions in Britton-Robinson buffer solution (50 mM, water/ethanol v/v of 99/1 at pH 7.4). Probe 1 selectively exhibited an intense blue fluorescence with hydrazine in less than 2 minutes, whereas light green or no fluorescence was noticed with substituted amines and amino acids. Among all the probes employed (1-4) in the present study, probes 1 and 2 were found efficient towards the rapid detection of hydrazine. Furthermore, the fluorescence sensing ability of probes 1 and 2 was tested not only under varying pH conditions but also by varying water-fraction from 0-99%. Moreover, the detection limits of hydrazine using 1 and 2 were found as 8.4 and 8.7 ppb, respectively, which is less than the acceptable limit as per the standards of the US Environment Protection Agency. In this contribution, the probes 1 and 2 demonstrate rapid, selective, sensitive, and ratiometric detection of highly toxic hydrazine by OFF-ON fluorescence switch in water samples as well as living cells.


Assuntos
Corantes Fluorescentes/química , Hidrazinas/análise , Poluentes Químicos da Água/análise , Acetatos/química , Acetatos/efeitos da radiação , Acetatos/toxicidade , Teoria da Densidade Funcional , Água Potável/análise , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Humanos , Hidrazinas/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Células MCF-7 , Microscopia de Fluorescência , Modelos Químicos , Rios/química , Espectrometria de Fluorescência , Raios Ultravioleta , Poluentes Químicos da Água/química
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 210: 171-180, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30453193

RESUMO

A new series of 2­styryl phenanthro[9,10­d]oxazoles was readily accessible from the condensation reaction of 9,10­phenanthroquinone with cinnamaldehydes in the presence of lactic acid. All these styryl dyes were isolated in good yields and characterized by various analytical and spectroscopic techniques. One of the dyes containing NO2 group (3d) was structurally characterized by single crystal X-ray analysis. These dyes displayed emission in blue to green region with larger Stokes shift values characteristic to the nature of substituents. In addition, positive solvatochromic trend was observed by increasing the solvent polarity suggestive of a more stabilized polar excited state. Moreover, the addition of trifluoroacetic acid leads to a prominent blue-shift in visible and emission color changes owing to the protonation of the nitrogen atom of oxazole moiety. Among the all, the oxazole derivative having NMe2 group (3b) exhibits good response to acidic pH in the range of 3.0 to 5.6 with a good linearity upon decreasing the pH from 8.0 to 2.16. The absorption studies were further supported by density functional theory calculations.

12.
Inorg Chem ; 57(24): 15270-15279, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30516379

RESUMO

In this paper, a new Th4+ ion-selective chromogenic sensor (L) was developed by reacting 1,10-phenanthroline-2,9-dicarbohydrazide with 2-hydroxy naphthaldehyde. The sensing ability of L toward Th4+ was investigated in solution and paper strips loaded with L using spectrophotometric and colorimetric methods. The selective interaction of L was examined with various f-metal ions and other selected metal ions from s-block and d-block elements. Results show that by the colorimetric method in solution-phase dimethyl sulfoxide/H2O (7:3, v/v) and paper strip methods, the naked-eye detectable color change of L occurred from colorless solution to yellow-orange and pale yellow colour upon interacting with Th4+ and Al3+, respectively, whereas other metal ions did not interfere. The ligand L exhibits two absorbance bands at 320 and 375 nm because of ligand-to-ligand charge transfer. Upon interaction with Th4+, L undergoes red shift of both absorption bands and the formation of a new UV-vis band at 335 and 440 nm. The UV-visible spectral studies indicate the formation of a 1:1 host-guest complex between L and Th4+ with an association constant of 4.7 × 103 M-1. The limit of quantification and limit of detection of L for the analysis of Th4+ are found to be 167 and 50 nM, respectively. The visually detectable color change of L has been well integrated with a smartphone RGB color value to make it an analytical signal for real-time analysis of Th4+ with the detection limit down to 116 nM. Besides, L was applied for the analysis of Th4+ content present in various real water samples, monazite, and lantern mantle samples by spectrophotometry and RGB color values. The binding mode of L with Th4+ is investigated by 1H NMR, electrospray ionization-mass, and theoretical studies.

13.
Biotechnol Appl Biochem ; 65(6): 865-875, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30086194

RESUMO

Fatty acids of specific chain lengths have been shown to inhibit the growth of Mycobacterium tuberculosis. In the present study, specific synthetic aromatic derivatives of n-octyl esters were investigated for their property to inhibit the growth of M. tuberculosis H37Ra. Agar well diffusion assay indicated that the crude synthetic derivatives obtained by the esterification of phthalic acid (PA) and n-octanol exhibited antimycobacterial activity. Further, the activity was authenticated with the Miroplate Alamar Blue Assay (MABA). Subsequently, the active component was purified by bioactivity guided chromatographic fractionation. The structure of the synthetic derivative was deduced by UV-Vis, FT-IR, LC-MS, GC-mass spectrometry, and NMR spectroscopy. Molecular docking and molecular dynamic simulation (MDS) were performed with Autodock 4.0 and GROMACS 5.1.2 softwares, respectively. It was found that mono-n-octyl phthalate (MOP) exhibited antimycobacterial activity with a MIC of 20 µg/mL, and not by any other related compounds, including di-n-octyl phthalate, PA, phthalic anhydride, and n-octanol. Binding of MOP with protein kinase B can participate in the binding cavity region, which was previously reported. Subsequently, we authenticate the stability with MDS. This is first report on the inhibition of M. tuberculosis growth by MOP.


Assuntos
Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/química , Antibacterianos/síntese química , Antibacterianos/química , Sítios de Ligação/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Ácidos Ftálicos/síntese química , Ácidos Ftálicos/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Software
14.
Appl Opt ; 56(11): 3229-3239, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414386

RESUMO

Temperature-induced crystallization events in an aqueous calcium chloride solution in the concentration range of 15-40 mass% are monitored using an optical fiber Fresnel reflection sensor in the temperature range of 30°C to -200°C. The deviation of the phase boundary from equilibrium and the formation of an eutectic mixture followed by its densification during rapid cooling are inferred from the distinct signatures of the optical fiber sensor via the changes in refractive index. During the natural heating at laboratory ambient conditions, the optical signals impart the completion of dissolution of ice and CaCl2·6H2O. The corresponding temperatures have been used in Linke's equations to obtain the salinities, which are in good agreement with the intended solution concentrations. The sensor signal imparts simultaneous melting of the constituents of the eutectic mixture of a 29.7 mass% solution during the natural heating phase. The persistence of the metastable liquid phase at -200°C for tens of minutes followed by solidification is observed at all the concentrations studied. Finally, the feasibility of monitoring phase transitions in a NaCl-CaCl2-H2O system has been demonstrated.

15.
Top Curr Chem (Cham) ; 375(1): 10, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28058632

RESUMO

This review summarizes significant contributions reported on aminophosphine oxides (AmPOs), specifically those containing at least one amino group present as amino substituents on α- and ß-carbons including direct P-N bond containing molecules. AmPOs have additional 'N' site(s), including highly basic 'P=O' groups, and these features make favor smooth and unexpected behavior. The most striking manifestations of flexibility of AmPOs are that they are exciting ligand systems for the coordination chemistry of actinides, and their involvement in catalytic organic reactions including enantioselective opening of meso-epoxides, addition of silyl enol ethers, allylation with allyltributylstannane, etc. The diverse properties of the AmPOs and their metal complexes demonstrate both the scope and complexity of these systems, depending on the basicity of phosphoryl group, and nature of the substituents on the pentavalent tetracoordinate phosphorus atom and metal. Two components key to understanding the challenges of actinide separations are detailed here, namely, previously described separation methods, and recent investigations into the fundamental coordination chemistry of actinides. Both are aimed at probing the critical features necessary for improved selectivity of separations. This review leads to the conclusion that, although many AmPOs have already been discovered and developed over the past century, many opportunities nevertheless exist for further developments towards new extraction processes and new catalytic materials by fine tuning the electronic and steric properties of substituents on the central phosphorus atom.


Assuntos
Óxidos/química , Fosfinas/química , Estrutura Molecular , Óxidos/síntese química , Fosfinas/síntese química
16.
Opt Express ; 24(5): 5395-5410, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092363

RESUMO

We report on a technique for monitoring the crystallization of water and aqueous solution of NaCl at atmospheric pressure, when cooled via liquid nitrogen, using a Fresnel reflection-based optical fiber sensor. The crystallization of distilled water and the associated changes in refractive index inferred from the sensor response comply with the previous reports on physical properties of supercooled water. The phase separation of NaCl.2H2O and the formation of eutectic mixture were inferred from the distinct features of the sensor signal during the cooling of NaCl solution. But the thermocouple did not detect the exothermic heat of crystallization due to rapid cooling. The influence of temperature gradients while interpreting the optical signals during this rapid cooling process and the effects of sensor debonding during the heating phase are discussed. The results demonstrate the potential of Fresnel sensors for monitoring the crystallization-induced phase changes in supercooled salt solutions and offers applications in areas where monitoring and controlling crystallization is important.

17.
Artigo em Inglês | MEDLINE | ID: mdl-25754392

RESUMO

The interaction of food colorant norbixin with calf thymus DNA (CTDNA) was investigated through UV-Visible spectroscopy, Fourier Transform Infrared (FTIR), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR), DNA melting studies, electrophoretic analysis, histological staining technique and molecular docking studies. The results indicated that norbixin interacted with CTDNA by partial intercalation mode. The binding constant (K) of norbixin with CTDNA was calculated to be 5.08×10(5) Mol(-1) L. FTIR and CD studies were coupled with (1)H NMR spectra revealed that norbixin intercalates partially and binds to the groove's, phosphate group, deoxyribose sugar of DNA and also induces conformational transition of B-form to A-form DNA. Agarose gel electrophoretic and histological staining technique results further prove that, norbixin specifically binds to the DNA in the cell. Moreover, molecular docking studies on the specific binding of norbixin with CTDNA have exhibited lowest conformation energy score of -3.2. Therefore, this food colorant has the ability to interact with DNA and it could emerge as a promising class of natural DNA targeted therapeutic.


Assuntos
Carotenoides/metabolismo , Simulação por Computador , DNA/metabolismo , Animais , Carotenoides/química , Bovinos , Dicroísmo Circular , DNA/química , Eletroforese em Gel de Ágar , Conformação Molecular , Simulação de Acoplamento Molecular , Desnaturação de Ácido Nucleico , Cebolas/citologia , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem
18.
Biomacromolecules ; 16(3): 894-903, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25671794

RESUMO

Nonviral gene delivery vectors are acquiring greater attention in the field of gene therapy by replacing the biological viral vectors. DNA-cationic polymer complexes are one of the most promising systems to find application in gene therapy. Hence, a complete insight of their biophysical characterization and binding energy profile is important in understanding the mechanism involved in nonviral gene therapy. In this investigation, the interaction between calf thymus DNA (ctDNA) and imidazolium-based poly(ionic liquids) (PILs) also known as polyelectrolytes with three different alkyl side chains (ethyl, butyl, and hexyl) in physiological conditions using various spectroscopic experiments with constant DNA concentration and varying polyelectrolyte concentrations is reported. UV-visible absorption, fluorescence quenching studies, gel electrophoresis, circular dichroism (CD), and Fourier transform infrared spectroscopy (FTIR) have confirmed the binding of polyelectrolytes with DNA. UV-vis absorption measurements and fluorescence quenching revealed that the binding between DNA and the polyelectrolyte is dominated by electrostatic interactions. Additionally, CD and FTIR results indicated that the DNA retained its B-form with minor perturbation in the phosphate backbone without significant change in the conformation of its base pairs. Preference for alkyl side chains (K(PIL-Ethyl Br) < K(PIL-Butyl Br) < K(PIL-Hexyl Br)) toward efficient binding between the polyelectrolyte and DNA was inferred from the binding and quenching constants calculated from the absorption and emission spectra, respectively. Further, in silico molecular docking studies not only validated the observed binding trend but also provided insight into the binding mode of the polyelectrolyte-DNA complex.


Assuntos
DNA/química , Imidazóis/química , Polímeros/química , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos/química , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Appl Biochem Biotechnol ; 173(2): 596-608, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24723202

RESUMO

A group of hydrazide and semicarbazide derivatives containing isopropylidene, benzylidene, cyclohexylidene, and phospholidene groups was synthesized and characterized by spectroscopic techniques. These compounds were tested for DNA interaction studies monitored by UV-Vis and IR data as well as molecular docking. Investigations on interactions of these compounds with DNA revealed an intercalative mode of binding between them. It is interesting to note that semicarbazide derivatives with aliphatic substituents showed better DNA binding than the aromatic substituents.


Assuntos
DNA/metabolismo , Nitrogênio/química , Semicarbazidas/química , Semicarbazidas/metabolismo , DNA/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Termodinâmica
20.
J Environ Health Sci Eng ; 12(1): 53, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24581307

RESUMO

BACKGROUND: p-Nitrophenol (PNP) occurs as contaminants of industrial effluents and it is the most important environmental pollutant and causes significant health and environmental risks, because it is toxic to many living organisms. Nevertheless, the information regarding PNP degradation pathways and their enzymes remain limited. OBJECTIVE: To evaluate the efficacy of the Pseudomonas Putida 1274 for removal of PNP. METHODS: P. putida MTCC 1274 was obtained from MTCC Chandigarh, India and cultured in the minimal medium in the presence of PNP. PNP degradation efficiency was compared under different pH and temperature ranges. The degraded product was isolated and analyzed with different chromatographic and spectroscopic techniques. RESULTS: P. putida 1274 shows good growth and PNP degradation at 37°C in neutral pH. Acidic and alkali pH retarded the growth of P. putida as well as the PNP degradation. On the basis of specialized techniques, hydroquinone was identified as major degraded product. The pathway was identified for the biodegradation of PNP. It involved initial removal of the nitrate group and formation of hydroquinone as one of the intermediates. CONCLUSION: Our results suggested that P. putida 1274 strain would be a suitable aspirant for bioremediation of nitro-aromatic compounds contaminated sites in the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...