Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can Prosthet Orthot J ; 5(1): 36223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37614474

RESUMO

BACKGROUND: Biofeedback (BFB), the practice of providing real-time sensory feedback has been shown to improve gait rehabilitation outcomes. BFB training through rhythmic stimulation has the potential to improve spatiotemporal gait asymmetries while minimizing cognitive load by encouraging a synchronization between the user's gait cycle and an external rhythm. OBJECTIVE: The purpose of this work was to evaluate if rhythmic stimulation can improve the stance time symmetry ratio (STSR) and to compare vibrotactile to auditory stimulation. Gait parameters including velocity, cadence, stride length, double support time, and step length symmetry, were also examined. METHODOLOGY: An experimental rhythmic stimulation system was developed, and twelve healthy adults (5 males), age 28.42 ± 10.93 years, were recruited to participate in walking trials. A unilateral ankle weight was used to induce a gait asymmetry to simulate asymmetry as commonly exhibited by individuals with lower limb amputation and other clinical disorders. Four conditions were evaluated: 1) No ankle weight baseline, 2) ankle weight without rhythmic stimulation, 3) ankle weight + rhythmic vibrotactile stimulation (RVS) using alternating motors and 4) ankle weight + rhythmic auditory stimulation (RAS) using a singletone metronome at the participant's self-selected cadence. FINDINGS: As expected the STSR became significantly more asymmetrical with the ankle weight (i.e. induced asymmetry condition). STSR improved significantly with RVS and RAS when compared to the ankle weight without rhythmic stimulation. Cadence also significantly improved with RVS and RAS compared to ankle weight without rhythmic stimulation. With the exception of double support time, the other gait parameters were unchanged from the ankle weight condition. There were no statistically significant differences between RVS and RAS. CONCLUSION: This study found that rhythmic stimulation can improve the STSR when an asymmetry is induced. Moreover, RVS is at least as effective as auditory stimulation in improving STSR in healthy adults with an induced gait asymmetry. Future work should be extended to populations with mobility impairments and outside of laboratory settings.

2.
Can Prosthet Orthot J ; 5(1): 36744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37614481

RESUMO

BACKGROUND: Gait symmetry is the degree of equality of biomechanical parameters between limbs within a gait cycle. Human gait is highly symmetrical; however, in the presence of pathology, gait often lacks symmetry. Biofeedback (BFB) systems have demonstrated the potential to reduce gait asymmetry, improve gait function, and benefit overall long-term musculoskeletal health. OBJECTIVES: The aim of this study was to develop a BFB system and evaluate three unique BFB strategies, including bidirectional control - constant vibration (BC), bidirectional control - variable vibration (BV), and unidirectional control - variable vibration (UV) relevant to gait symmetry. The assessed feedback strategies were a combination of vibration frequency/amplitude levels, vibration thresholds, and vibrotactile stimuli from one and two vibrating motors (tactors). Learning effect and short-term retention were also assessed. METHODOLOGY: Testing was performed using a custom BFB system that induces stance time asymmetries to modulate temporal gait symmetry. The BFB system continuously monitors specific gait events (heel-strike and toe-off) and calculates the symmetry ratio, based on the stance time of both limbs to provide real-time biomechanical information via the vibrating motors. Overall walking performance of ten (n=10) able-bodied individuals (age 24.8 ± 4.4 years) was assessed via metrics of symmetry ratio, symmetry ratio error, walking speed, and motor's vibration percentages. FINDINGS: All participants utilized BFB somatosensory information to modulate their symmetry ratio. UV feedback produced a greater change in symmetry ratio, and it came closer to the targeted symmetry ratio. Learning or short-term retention effects were minimal. Walking speeds were reduced with feedback compared to no feedback; however, UV walking speeds were significantly faster compared to BV and BC. CONCLUSION: The outcomes of this study provide new insights into the development and implementation of feedback strategies for gait retraining BFB systems that may ultimately benefit individuals with pathological gait. Future work should assess longer-term use and long-term learning and retention effects of BFB systems in the populations of interest.

3.
Can Prosthet Orthot J ; 4(1): 36059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37614935

RESUMO

BACKGROUND: Pressure sensing at the body-device interface can help assess the quality of fit and function of assistive devices during physical activities and movement such as walking and running. However, the dynamic performance of various pressure sensor configurations is not well established. OBJECTIVES: Two common commercially available thin-film pressure sensors were tested to determine the effects of clinically relevant setup configurations focusing on loading areas, interfacing elements (i.e. 'puck') and calibration methods. METHODOLOGY: Testing was performed using a customized universal testing machine to simulate dynamic, mobility relevant loads at the body-device interface. Sensor performance was evaluated by analyzing accuracy and hysteresis. FINDINGS: The results suggest that sensor calibration method has a significant effect on sensor performance although the difference is mitigated by using an elastomeric loading puck. Both sensors exhibited similar performance during dynamic testing that agree with accuracy and hysteresis values reported by manufacturers and in previous studies assessing mainly static and quasi-static conditions. CONCLUSION: These findings suggest that sensor performance under mobility relevant conditions may be adequately represented via static and quasi-testing testing. This is important since static testing is much easier to apply and reduces the burden on users to verify dynamic performance of sensors prior to clinical application. The authors also recommend using a load puck for dynamic testing conditions to achieve optimal performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...