Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 11(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883037

RESUMO

This study was conducted to dissect the genetic basis and to explore the candidate genes underlying one of the important genomic regions on an SBI-10 long arm (L), governing the complex stay-green trait contributing to post-flowering drought-tolerance in sorghum. A fine-mapping population was developed from an introgression line cross-RSG04008-6 (stay-green) × J2614-11 (moderately senescent). The fine-mapping population with 1894 F2 was genotyped with eight SSRs and a set of 152 recombinants was identified, advanced to the F4 generation, field evaluated with three replications over 2 seasons, and genotyped with the GBS approach. A high-resolution linkage map was developed for SBI-10L using 260 genotyping by sequencing-Single Nucleotide Polymorphism (GBS-SNPs). Using the best linear unpredicted means (BLUPs) of the percent green leaf area (%GL) traits and the GBS-based SNPs, we identified seven quantitative trait loci (QTL) clusters and single gene, mostly involved in drought-tolerance, for each QTL cluster, viz., AP2/ERF transcription factor family (Sobic.010G202700), NBS-LRR protein (Sobic.010G205600), ankyrin-repeat protein (Sobic.010G205800), senescence-associated protein (Sobic.010G270300), WD40 (Sobic.010G205900), CPK1 adapter protein (Sobic.010G264400), LEA2 protein (Sobic.010G259200) and an expressed protein (Sobic.010G201100). The target genomic region was thus delimited from 15 Mb to 8 genes co-localized with QTL clusters, and validated using quantitative real-time (qRT)-PCR.


Assuntos
Senescência Celular , Mapeamento Cromossômico/métodos , Ligação Genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sorghum/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Sorghum/fisiologia
2.
Indoor Air ; 14(6): 405-12, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15500633

RESUMO

UNLABELLED: The airborne fungal concentration measured with air samplers during specific time intervals may not adequately represent the indoor air quality because of the sporadic nature of spore release from sources. The conventional source evaluation (e.g. swab and tape sampling) characterizes the mold source but does not relate to the fraction of spores that can be aerosolized from a contaminated material. As an alternative to these methods, we have recently developed and laboratory-tested a novel Fungal Spore Source Strength Tester (FSSST). It allows assessing the potential of aerosolization of fungal spores from contaminated surfaces under the most favorable release conditions. In this study, the FSSST was used to characterize the release of spores from four building materials in mold-problem homes. The spores of different species were efficiently aerosolized by the FSSST, exhibiting a total spore release rate ranging approximately from 10(2) to 10(3) cm2/min. For all tested materials, <2% of the spores on the contaminated surface were released during the tests. The airborne spore concentration estimated from the release rate data was found in most cases to be significantly greater than the concentration actually measured in these environments with simultaneous air sampling. The results suggest that the FSSST can be used for the assessment of maximum potential exposure to airborne spores released from identified sources in homes. PRACTICAL IMPLICATIONS: A recently developed FSSST was found to be suitable to measure the aerosolization potential of indoor fungal sources at the most favorable release conditions. The FSSST generates the data that allows assessing the strength of mold sources in homes with respect to their maximum ability to contaminate indoor air with fungi. The novel approach bridges two conventional methods, the air sampling and the direct source evaluation (e.g. swab sampling), thus providing a better representation of the airborne fungal exposure than these methods individually. The device prototype can be used for evaluating the effectiveness of environmental interventions by taking samples before and after the intervention. As a broader application, the FSSST can be utilized for assessing the release of various hazardous biological and non-biological particles from contaminated surfaces.


Assuntos
Microbiologia do Ar , Poluentes Atmosféricos/isolamento & purificação , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Habitação , Esporos Fúngicos/isolamento & purificação , Materiais de Construção , Humanos , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...