Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38885104

RESUMO

Learning-based methods offer performance leaps over traditional methods in classification analysis of high-dimensional functional MRI (fMRI) data. In this domain, deep-learning models that analyze functional connectivity (FC) features among brain regions have been particularly promising. However, many existing models receive as input temporally static FC features that summarize inter-regional interactions across an entire scan, reducing the temporal sensitivity of classifiers by limiting their ability to leverage information on dynamic FC features of brain activity. To improve the performance of baseline classification models without compromising efficiency, here we propose a novel plug-in based on a graph neural network, GraphCorr, to provide enhanced input features to baseline models. The proposed plug-in computes a set of latent FC features with enhanced temporal information while maintaining comparable dimensionality to static features. Taking brain regions as nodes and blood-oxygen-level-dependent (BOLD) signals as node inputs, GraphCorr leverages a node embedder module based on a transformer encoder to capture dynamic latent representations of BOLD signals. GraphCorr also leverages a lag filter module to account for delayed interactions across nodes by learning correlational features of windowed BOLD signals across time delays. These two feature groups are then fused via a message passing algorithm executed on the formulated graph. Comprehensive demonstrations on three public datasets indicate improved classification performance for several state-of-the-art graph and convolutional baseline models when they are augmented with GraphCorr.

2.
Med Image Anal ; 88: 102841, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224718

RESUMO

Deep-learning models have enabled performance leaps in analysis of high-dimensional functional MRI (fMRI) data. Yet, many previous methods are suboptimally sensitive for contextual representations across diverse time scales. Here, we present BolT, a blood-oxygen-level-dependent transformer model, for analyzing multi-variate fMRI time series. BolT leverages a cascade of transformer encoders equipped with a novel fused window attention mechanism. Encoding is performed on temporally-overlapped windows within the time series to capture local representations. To integrate information temporally, cross-window attention is computed between base tokens in each window and fringe tokens from neighboring windows. To gradually transition from local to global representations, the extent of window overlap and thereby number of fringe tokens are progressively increased across the cascade. Finally, a novel cross-window regularization is employed to align high-level classification features across the time series. Comprehensive experiments on large-scale public datasets demonstrate the superior performance of BolT against state-of-the-art methods. Furthermore, explanatory analyses to identify landmark time points and regions that contribute most significantly to model decisions corroborate prominent neuroscientific findings in the literature.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...