Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3289, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672369

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to spread globally, highlighting the urgent need for safe and effective vaccines that could be rapidly mobilized to immunize large populations. We report the preclinical development of a self-amplifying mRNA (SAM) vaccine encoding a prefusion stabilized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein and demonstrate strong cellular and humoral immune responses at low doses in mice and rhesus macaques. The homologous prime-boost vaccination regimen of SAM at 3, 10 and 30 µg induced potent neutralizing antibody (nAb) titers in rhesus macaques following two SAM vaccinations at all dose levels, with the 10 µg dose generating geometric mean titers (GMT) 48-fold greater than the GMT of a panel of SARS-CoV-2 convalescent human sera. Spike-specific T cell responses were observed with all tested vaccine regimens. SAM vaccination provided protective efficacy against SARS-CoV-2 challenge as both a homologous prime-boost and as a single boost following ChAd prime, demonstrating reduction of viral replication in both the upper and lower airways. The SAM vaccine is currently being evaluated in clinical trials as both a homologous prime-boost regimen at low doses and as a boost following heterologous prime.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Macaca mulatta/genética , Camundongos , RNA Mensageiro , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinação
2.
NPJ Vaccines ; 4: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774997

RESUMO

Anthrax is a serious biological threat caused by pulmonary exposure to aerosolized spores of Bacillus anthracis. Biothrax® (anthrax vaccine adsorbed (AVA)) is the only Food and Drug Administration-licensed vaccine and requires five administrations over 12 months with annual boosting to maintain pre-exposure prophylaxis. Here we report the evaluation of a single intramuscular injection of recombinant B. anthracis-protective antigen (rPA) formulated in the DPX delivery platform. Immune responses were compared to an alum-based formulation in mice and rabbits. Serological analysis of anti-rPA immunoglobulin G and toxin neutralization activity demonstrated higher responses induced by DPX-rPA when compared to rPA in alum. DPX-rPA was compared to AVA in rabbits and non-human primates (NHPs). In both species, DPX-rPA generated responses after a single immunization, whereas AVA required two immunizations. In rabbits, single injection of DPX-rPA or two injections of AVA conferred 100% protection from anthrax challenge. In NHPs, single-dose DPX-rPA was 100% protective against challenge, whereas one animal in the two-dose AVA group and all saline administered animals succumbed to infection. DPX-rPA was minimally reactogenic in all species tested. These data indicate that DPX-rPA may offer improvement over AVA by reducing the doses needed for protective immune responses and is a promising candidate as a new-generation anthrax vaccine.

3.
Vaccine ; 35(37): 4952-4959, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28774566

RESUMO

The anthrax vaccine candidate AV7909 is being developed as a next generation vaccine for a post-exposure prophylaxis (PEP) indication against anthrax. AV7909 consists of the Anthrax Vaccine Adsorbed (AVA, BioThrax®) bulk drug substance adjuvanted with the immunostimulatory oligodeoxynucleotide (ODN) compound, CPG 7909. The addition of CPG 7909 to AVA enhances both the magnitude and the kinetics of antibody responses in animals and human subjects, making AV7909 a suitable next-generation vaccine for use in a PEP setting. The studies described here provide initial information on AV7909-induced toxin-neutralizing antibody (TNA) levels associated with the protection of animals from lethal Bacillus anthracis challenge. Guinea pigs or nonhuman primates (NHPs) were immunized on Days 0 and 28 with various dilutions of AV7909, AVA or a saline or Alhydrogel+CPG 7909 control. Animals were challenged via the inhalational route with a lethal dose of aerosolized B. anthracis (Ames strain) spores and observed for clinical signs of disease and mortality. The relationship between pre-challenge serum TNA levels and survival following challenge was determined in order to calculate a threshold TNA level associated with protection. Immunisation with AV7909 induced a rapid, highly protective TNA response in guinea pigs and NHPs. Surprisingly, the TNA threshold associated with a 70% probability of survival for AV7909 immunized animals was substantially lower than the threshold which has been established for the licensed AVA vaccine. The results of this study suggest that the TNA threshold of protection against anthrax could be modified by the addition of an immune stimulant such as CPG 7909 and that the TNA levels associated with protection may be vaccine-specific.


Assuntos
Vacinas contra Antraz/imunologia , Anticorpos Neutralizantes/imunologia , Animais , Cobaias , Profilaxia Pós-Exposição , Primatas , Vacinação
4.
Clin Vaccine Immunol ; 22(4): 430-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673303

RESUMO

AdVAV is a replication-deficient adenovirus type 5-vectored vaccine expressing the 83-kDa protective antigen (PA83) from Bacillus anthracis that is being developed for the prevention of disease caused by inhalation of aerosolized B. anthracis spores. A noninferiority study comparing the efficacy of AdVAV to the currently licensed Anthrax Vaccine Absorbed (AVA; BioThrax) was performed in New Zealand White rabbits using postchallenge survival as the study endpoint (20% noninferiority margin for survival). Three groups of 32 rabbits were vaccinated with a single intranasal dose of AdVAV (7.5 × 10(7), 1.5 × 10(9), or 3.5 × 10(10) viral particles). Three additional groups of 32 animals received two doses of either intranasal AdVAV (3.5 × 10(10) viral particles) or intramuscular AVA (diluted 1:16 or 1:64) 28 days apart. The placebo group of 16 rabbits received a single intranasal dose of AdVAV formulation buffer. All animals were challenged via the inhalation route with a targeted dose of 200 times the 50% lethal dose (LD50) of aerosolized B. anthracis Ames spores 70 days after the initial vaccination and were followed for 3 weeks. PA83 immunogenicity was evaluated by validated toxin neutralizing antibody and serum anti-PA83 IgG enzyme-linked immunosorbent assays (ELISAs). All animals in the placebo cohort died from the challenge. Three of the four AdVAV dose cohorts tested, including two single-dose cohorts, achieved statistical noninferiority relative to the AVA comparator group, with survival rates between 97% and 100%. Vaccination with AdVAV also produced antibody titers with earlier onset and greater persistence than vaccination with AVA.


Assuntos
Vacinas contra Antraz/administração & dosagem , Vacinas contra Antraz/imunologia , Antraz/prevenção & controle , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Portadores de Fármacos , Mastadenovirus/genética , Infecções Respiratórias/prevenção & controle , Administração Intranasal , Animais , Antraz/imunologia , Vacinas contra Antraz/genética , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Antígenos de Bactérias/genética , Antitoxinas/sangue , Toxinas Bacterianas/genética , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos , Imunoglobulina G/sangue , Masculino , Testes de Neutralização , Coelhos , Infecções Respiratórias/imunologia , Análise de Sobrevida , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
5.
Clin Vaccine Immunol ; 20(7): 1016-26, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23658392

RESUMO

Antimicrobials administered postexposure can reduce the incidence or progression of anthrax disease, but they do not protect against the disease resulting from the germination of spores that may remain in the body after cessation of the antimicrobial regimen. Such additional protection may be achieved by postexposure vaccination; however, no anthrax vaccine is licensed for postexposure prophylaxis (PEP). In a rabbit PEP study, animals were subjected to lethal challenge with aerosolized Bacillus anthracis spores and then were treated with levofloxacin with or without concomitant intramuscular (i.m.) vaccination with anthrax vaccine adsorbed (AVA) (BioThrax; Emergent BioDefense Operations Lansing LLC, Lansing, MI), administered twice, 1 week apart. A significant increase in survival rates was observed among vaccinated animals compared to those treated with antibiotic alone. In preexposure prophylaxis studies in rabbits and nonhuman primates (NHPs), animals received two i.m. vaccinations 1 month apart and were challenged with aerosolized anthrax spores at day 70. Prechallenge toxin-neutralizing antibody (TNA) titers correlated with animal survival postchallenge and provided the means for deriving an antibody titer associated with a specific probability of survival in animals. In a clinical immunogenicity study, 82% of the subjects met or exceeded the prechallenge TNA value that was associated with a 70% probability of survival in rabbits and 88% probability of survival in NHPs, which was estimated based on the results of animal preexposure prophylaxis studies. The animal data provide initial information on protective antibody levels for anthrax, as well as support previous findings regarding the ability of AVA to provide added protection to B. anthracis-infected animals compared to antimicrobial treatment alone.


Assuntos
Vacinas contra Antraz/administração & dosagem , Vacinas contra Antraz/imunologia , Antraz/prevenção & controle , Profilaxia Pós-Exposição/métodos , Vacinação/métodos , Adolescente , Adulto , Idoso , Animais , Vacinas contra Antraz/efeitos adversos , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Antitoxinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Macaca fascicularis , Masculino , Pessoa de Meia-Idade , Coelhos , Análise de Sobrevida , Vacinação/efeitos adversos , Adulto Jovem
6.
Clin Vaccine Immunol ; 20(1): 1-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23100479

RESUMO

Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine.


Assuntos
Administração Intranasal , Vacinas contra Antraz/administração & dosagem , Vacinas contra Antraz/imunologia , Antraz/prevenção & controle , Adenoviridae/genética , Animais , Antraz/imunologia , Bacillus anthracis/genética , Modelos Animais de Doenças , Portadores de Fármacos , Feminino , Vetores Genéticos , Camundongos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
7.
Am J Vet Res ; 64(11): 1401-8, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14620777

RESUMO

OBJECTIVE: To determine the effect of a single bout of exercise and increased substrate availability after exercise on gene expression and content of the glucose transporter-4 (GLUT-4) protein in equine skeletal muscle. ANIMALS: 6 healthy adult Thoroughbreds. PROCEDURES: The study was designed in a balanced, randomized, 3-way crossover fashion. During 2 trials, horses were exercised at 45% of their maximal rate of oxygen consumption for 60 minutes after which 1 group received water (10 mL/kg), and the other group received glucose (2 g/kg, 20% solution) by nasogastric intubation. During 1 trial, horses stood on the treadmill (sham exercise) and then received water (10 mL/kg) by nasogastric intubation. Muscle glycogen concentration and muscle GLUT-4 protein and mRNA content were determined before exercise and at 5 minutes and 4, 8, and 24 hours after exercise. RESULTS: Although exercise resulted in a 30% reduction in muscle glycogen concentration, no significant difference was detected in muscle GLUT-4 protein or mRNA content before and after exercise. Glycogen replenishment was similar in both exercised groups and was not complete at 24 hours after exercise. Horses that received glucose had significantly higher plasma glucose and insulin concentrations for 3 hours after exercise, but no effect of hyperglycemia was detected on muscle GLUT-4 protein or mRNA content. CONCLUSION: Under the conditions of this study, neither exercise nor the combination of exercise followed by hyperglycemia induced translation or transcription of the GLUT-4 protein in horses.


Assuntos
Glucose/farmacologia , Hiperglicemia/fisiopatologia , Proteínas de Transporte de Monossacarídeos/genética , Proteínas Musculares , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Animais , Glicemia/metabolismo , Teste de Esforço/veterinária , Feminino , Glucose/administração & dosagem , Transportador de Glucose Tipo 4 , Glicogênio/metabolismo , Cavalos , Intubação Gastrointestinal , Lactatos/sangue , Masculino , Proteínas de Transporte de Monossacarídeos/metabolismo , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...