Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(9): 7919-7926, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453962

RESUMO

BACKGROUND: Ability to restore male fertility is important trait for sunflower breeding. The most commonly used fertility restoration gene in the production of sunflower hybrids is Rf1. The localization of Rf1 on the linkage group 13 has been previously shown, however, its exact position, its sequence and molecular mechanism for fertility restoration remain unknown. Therefore, several markers linked to Rf1 gene, commonly used for MAS, don't always allow to identify the genotype of plants. For this reason, the search for new markers and precise localization of the Rf1 gene is an urgent task. METHODS AND RESULTS: Based on previously identified single nucleotide polymorphisms (SNPs) at LG13, significantly associated with the ability to restore male fertility, two markers have been developed that have performed well after careful evaluation. These markers, together with other Rf1 markers, were applied for genotyping 72 diversity panel accessions and 291 individuals of F2 segregating population, obtained from crossing the cytoplasmic male sterility (CMS) AHO33 and restorer RT085HO lines. The analysis revealed no recombinants between Rf1 gene and SRF833 marker, the distance between Rf1 and SRF122 marker was 1.0 cM. CONCLUSIONS: Data obtained made it possible to specify the localization of the Rf1 gene and reduce the list of candidate genes to the 3 closely linked PPR-genes spanning a total of 59 Kb. However, it cannot be ruled out that analysis of the candidate region in the genome of fertility restorer lines can reveal new candidate genes in this locus that are absent in the cytoplasmic male sterility maintainer reference sequence.


Assuntos
Helianthus , Humanos , Helianthus/genética , Marcadores Genéticos/genética , Genes de Plantas/genética , Melhoramento Vegetal , Fertilidade/genética , Infertilidade das Plantas/genética
2.
Antioxidants (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107330

RESUMO

As a result of the accident at the Chornobyl Nuclear Power Plant, significant territories were exposed to ionizing radiation. Some isotopes, such as 137Cs, are capable of making a significant impact on living organisms in the long-term perspective. The generation of reactive oxygen species is one mechanism by which ionizing radiation affects living organisms, initiating mechanisms of antioxidant protection. In this article, the effect of increased ionizing radiation on the content of non-enzymatic antioxidants and the activity of antioxidant defense enzymes of Helianthus tuberosum L. was studied. This plant is widely distributed in Europe and characterized by high adaptability to abiotic factors. We found that the activity of antioxidant defense enzymes, such as catalase and peroxidase, weakly correlated with radiation exposure. The activity of ascorbate peroxidase, on the contrary, is strongly positively correlated with radiation exposure. The samples growing on the territory with constant low exposure to ionizing radiation were also characterized by an increased concentration of ascorbic acid and water-soluble phenolic compounds compared to the controls. This study may be useful for understanding the mechanisms underlying the adaptive reactions of plants under prolonged exposure to ionizing radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...