Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37688173

RESUMO

Inks for 3D printing were prepared by dispersing bacterial cellulose nanofibers (CNF) functionalized with methacrylate groups in a polymerizable deep eutectic solvent (DES) based on choline chloride and acrylic acid with water as a cosolvent. After 3D printing and UV-curing, the double-network composite gel consisting of chemically and physically crosslinked structures composed from sub-networks of modified CNF and polymerized DES, respectively, was formed. The rheological properties of inks, as well as mechanical and shape memory properties of the 3D-printed gels, were investigated in dynamic and static modes. It was shown that the optimal amount of water allows improvement of the mechanical properties of the composite gel due to the formation of closer contacts between the modified CNF. The addition of 12 wt% water results in an increase in strength and ultimate elongation to 11.9 MPa and 300%, respectively, in comparison with 5.5 MPa and 100% for an anhydrous system. At the same time, the best shape memory properties were found for an anhydrous system: shape fixation and recovery coefficients were 80.0 and 95.8%, respectively.

2.
Polymers (Basel) ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177302

RESUMO

The aim of this work was to study the influence of water as a co-solvent on the interaction between a polymerizable ionic liquid-choline acrylate (ChA)-and bacterial cellulose. Bacterial cellulose dispersed in ChA is a new type of UV-curable biopolymer-based ink that is a prospective material for the 3D printing of green composite ion-gels. Higher cellulose content in inks is beneficial for the ecological and mechanical properties of materials, and leads to increased viscosity and the yield stress of such systems and hampers printability. It was found that the addition of water results in (1) a decrease in the solvent viscosity and yield stress; and (2) a decrease in the stability of dispersion toward phase separation under stress. In this work, an optimal composition in the range of 30-40 wt% water content demonstrating 97-160 Pa of yield stress was found that ensures the printability and stability of inks. The rheological properties of inks and mechanical characteristics (0.7-0.8 MPa strength and 1.1-1.2 MPa Young's modulus) were obtained. The mechanism of influence of the ratio ChA/water on the properties of ink was revealed with atomic force microscopy, wide-angle X-ray diffraction studies of bacterial cellulose after regeneration from solvent, and computer simulation of ChA/water mixtures and their interaction with the cellulose surface.

3.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615546

RESUMO

A series of diphosphine Re(I) complexes Re1-Re4 have been designed via decoration of the archetypal core {Re(CO)2(N^N)} through the installations of the phosphines P0 and P1 bearing the terminal double bond, where N^N = 2,2'-bipyridine (N^N1), 4,4'-di-tert-butyl-2,2'-bipyridine (N^N2) or 2,9-dimethyl-1,10-phenanthroline (N^N3) and P0 = diphenylvinylphosphine, and P1 = 4-(diphenylphosphino)styrene. These complexes were copolymerized with the corresponding N-vinylpyrrolidone-based Macro-RAFT agents of different polymer chain lengths to give water-soluble copolymers of low-molecular p(VP-l-Re) and high-molecular p(VP-h-Re) block-copolymers containing rhenium complexes. Compounds Re1-Re4, as well as the copolymers p(VP-l-Re) and p(VP-h-Re), demonstrate phosphorescence from a 3MLCT excited state typical for this type of chromophores. The copolymers p(VP-l-Re#) and p(VP-h-Re#) display weak sensitivity to molecular oxygen in aqueous and buffered media, which becomes almost negligible in the model physiological media. In cell experiments with CHO-K1 cell line, p(VP-l-Re2) and p(VP-h-Re2) displayed significantly reduced toxicity compared to the initial Re2 complex and internalized into cells presumably by endocytic pathways, being eventually accumulated in endosomes. The sensitivity of the copolymers to oxygen examined in CHO-K1 cells via phosphorescence lifetime imaging microscopy (PLIM) proved to be inessential.


Assuntos
Povidona , Rênio , Cricetinae , Animais , Rênio/química , Solubilidade , 2,2'-Dipiridil , Polímeros/química , Células CHO , Água/química , Oxigênio
4.
Polymers (Basel) ; 14(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501542

RESUMO

Two polymerizable ionic liquids (or monomeric ionic liquids, mILs) namely 1-butyl-3-methylimidazolium and choline acrylates ([C4mim]A and ChA, respectively) were synthesized using the modified Fukumoto method from corresponding chlorides. The chemical structure of the prepared mILs was confirmed with FTIR and NMR study. Investigation of the thermal properties with DSC demonstrates that both mILs have a Tg temperature of about 180 K and a melting point around 310 K. It was shown that the temperature dependence of FTIR confirm the Tg to be below 200. Both mILs exhibited non-Newtonian shear thinning rheological behavior at shear rates >4 s−1. It was shown that [C4mim]A is able to dissolve bacterial cellulose (BC) leading to a decrease in its degree of polymerization and recrystallisation upon regeneration with water; although in the ChA, the crystalline structure and nanofibrous morphology of BC was preserved. It was demonstrated that the thixotropic and rheological properties of cellulose dispersion in ChA at room temperature makes this system a prospective ink for 3D printing with subsequent UV-curing. The 3D printed filaments based on ChA, containing 2 wt% of BC, and 1% of N,N'-methylenebisacrylamide after radical polymerization induced with 1% 2-hydroxy-2-methylpropiophenone, demonstrated Young's modulus 7.1 ± 1.0 MPa with 1.2 ± 0.1 MPa and 40 ± 5% of strength and ultimate elongation, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...