Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(3): 1331-1340, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425181

RESUMO

Materials with an intermediate energy band (IB) introduced in the forbidden gap are viable alternatives to tandem configurations of solar cells for increasing the photon-conversion efficiency. One of the aspiring designs proposed for the intermediate band concept is hyperdoped (Ti, V):In2S3. Being very important in copper indium gallium sulfide (CIGS) solar cells, indium thiospinel (In2S3) is known for its three different temperature as well as pressure, polymorphs. The most stable ß-In2S3 was experimentally shown to have an isolated intermediate band (IB) and exhibits sub-band gap absorption due to the completely filled IB after V-doping. Though experimental observation holds a positive signature, recent DFT studies did not show a metallic intermediate band for the V dopant in the 3+ charge state. In order to clarify this, we have taken incentive from experimental XRD analysis that V-doped ß-In2S3 shows peaks from disordered In vacancies (either α or γ), in addition to the ordered In vacancies expected. Hence, we have carried out state-of-the-art DFT based computations on pure and Ti, V-doped In2S3 in the γ-phase which has not been studied yet. We considered the Ti and V dopants in various charge states. Our theoretical study including hybrid functional, does in fact find the IB in V-doped γ-In2S3. However, at equilibrium the IB lies in between the Fermi level (E F) and conduction band minimum (CBM).

2.
Materials (Basel) ; 14(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445568

RESUMO

The exfoliation ability of nitrate based Mg1-xAlx(OH)2(NO3)x·mH2O layered double hydroxides (Mg-Al LDH) in formamide into single or multilayer nanosheets depends strongly on nitrate anion orientation and layer charge. Our systematic studies used materials that were likely to disclose differences with respect to anion type and their concentrations in the interlayer gallery. We assured to avoid any carbonate incorporation into the galleries for nitrate, chloride, iodide, and sulfate based Mg-Al LDHs. Furthermore, the comparative exfoliation experiments were conducted for fully hydrated samples with as similar particle morphology as possible. The exfoliation of nitrate Mg-Al LDH is far superior to similar clays with carbonate, sulfate, chloride, or iodide as charge balancing anions. Quantitative analysis of exfoliation yield for pre-treated, fully hydrated samples, shows an optimum composition for exfoliation into single nanosheets of around x ≈ 0.25, while double or triple layered sheets are encountered for other x-values. We observe a clear correlation between the expansion of the interlayer gallery due to progressing tilts of nitrate anions and water molecules out of the horizontal interlayer plane, suspension turbidity, and degree of exfoliation. The established correlations extends to nitrate Ni-Al LDH materials. We finally claim that morphology is a dominating parameter, with house-of-card morphology particles exfoliation far less than platelet-like particles. Hence, hydrothermal treatment may be favorable to enhance exfoliation yields.

3.
Materials (Basel) ; 13(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861587

RESUMO

Thin films of the catalytically interesting ternary and quaternary perovskites GdCoO3 and Gd0.9Ca0.1CoO3 are fabricated by atomic layer deposition using metal ß-diketonates and ozone as precursors. The resulting thin films are amorphous as deposited and become single-oriented crystalline on LaAlO3(100) and YAlO3(100/010) after post-annealing at 650 °C in air. The crystal orientations of the films are tunable by choice and the orientation of the substrate, mitigated through the interface via solid face epitaxy upon annealing. The films exhibit no sign of Co2+. Additionally, high-aspect-ratio Si(100) substrates were used to document the suitability of the developed process for the preparation of coatings on more complex, high-surface-area structures. We believe that coatings of GdCoO3 and Gd1-xCaxCoO3 may find applications within oxidation catalysis.

4.
Chem Commun (Camb) ; 55(26): 3817-3820, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30869684

RESUMO

The LiCl salt flux method is an established aid in oxyhydride synthesis. By operating the flux below its melting point, we have obtained phase pure Nd2LiHO3 for the first time. Further, the suitability of the flux method is shown to be dictated by a delicate balance between the thermal stability of the oxyhydride in question and the ionic mobility of the reactants.

5.
Inorg Chem ; 55(24): 12881-12889, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989200

RESUMO

Layered double hydroxides (LDH) are a broad group of widely studied materials. The layered character of those materials and their high flexibility for accommodating different metals and anions make them technologically interesting. The general formula for the LDH compound is [M1-xIIMxIII(OH)2][An-]x/n·mH2O, where MII is a divalent metal cation which can be substituted by MIII trivalent cation, and An- is a charge compensating anion located between positively charged layers. In this paper we present a comprehensive study on possible structural disorder in LDH. We show how X-ray powder diffraction (XRPD) can be used to reveal important features of the LDH crystal structure such as stacking faults, random interlayer shifts, anion-molecule orientation, crystal water content, distribution of interlayer distances, and also LDH slab thickness. All calculations were performed using the Discus package, which gives a better flexibility in defining stacking fault sequences, simulating and refining XRPD patterns, relative to DIFFaX, DIFFaX+, and FAULTS. Finally, we show how the modeling can be applied to two LDH samples: Ni0.67Cr0.33(OH)2(CO3)0.16·mH2O (3D structure) and Mg0.67Al0.33(OH)2(NO3)0.33 (2D layered structure).

6.
Chem Cent J ; 10: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26958074

RESUMO

BACKGROUND: Reproducible growth of narrow size distributed ε-Co nanoparticles with a specific size requires full understanding and identification of the role of essential synthesis parameters for the applied synthesis method. For the hot injection methodology, a significant discrepancy with respect to obtained sizes and applied reaction conditions is reported. Currently, a systematic investigation controlling key synthesis parameters as injection-temperature and time, metal to surfactant ratio and reaction holding time in terms of their impact on mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameter using dichlorobenzene (DCB), Co2(CO)8 and oleic acid (OA) as the reactant matrix is lacking. METHODS: A series of solution-based ε-Co nanoparticles were synthesized using the hot injection method. Suspensions and obtained particles were analyzed by DLS, ICP-OES, (synchrotron)XRD and TEM. Rietveld refinements were used for structural analysis. Mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameters were calculated with basis in measurements of 250-500 particles for each synthesis. 95 % bias corrected confidence intervals using bootstrapping were calculated for syntheses with three or four replicas. RESULTS: ε-Co NPs in the size range ~4-10 nm with a narrow size distribution are obtained via the hot injection method, using OA as the sole surfactant. Typically the synthesis yield is ~75 %, and the particles form stable colloidal solutions when redispersed in hexane. Reproducibility of the adopted synthesis procedure on replicate syntheses was confirmed. We describe in detail the effects of essential synthesis parameters, such as injection-temperature and time, metal to surfactant ratio and reaction holding time in terms of their impact on mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameter. CONCLUSIONS: The described synthesis procedure towards ε-Co nanoparticles (NPs) is concluded to be robust when controlling key synthesis parameters, giving targeted particle diameters with a narrow size distribution. We have identified two major synthesis parameters which control particle size, i.e., the metal to surfactant molar ratio and the injection temperature of the hot OA-DCB solution into which the cobalt precursor is injected. By increasing the metal to surfactant molar ratio, the mean particle diameter of the ε-Co NPs has been found to increase. Furthermore, an increase in the injection temperature of the hot OA-DCB solution into which the cobalt precursor is injected, results in a decrease in the mean particle diameter of the ε-Co NPs, when the metal to surfactant molar ratio [Formula: see text] is fixed at ~12.9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...