Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 747661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745181

RESUMO

Ramularia collo-cygni is the causal agent of Ramularia leaf spot disease (RLS) on barley and became, during the recent decades, an increasing threat for farmers across the world. Here, we analyze morphological, transcriptional, and metabolic responses of two barley cultivars having contrasting tolerance to RLS, when infected by an aggressive or mild R. collo-cygni isolate. We found that fungal biomass in leaves of the two cultivars does not correlate with their tolerance to RLS, and both cultivars displayed cell wall reinforcement at the point of contact with the fungal hyphae. Comparative transcriptome analysis identified that the largest transcriptional differences between cultivars are at the early stages of fungal colonization with differential expression of kinases, calmodulins, and defense proteins. Weighted gene co-expression network analysis identified modules of co-expressed genes, and hub genes important for cultivar responses to the two R. collo-cygni isolates. Metabolite analyses of the same leaves identified defense compounds such as p-CHDA and serotonin, correlating with responses observed at transcriptome and morphological level. Together these all-round responses of barley to R. collo-cygni provide molecular tools for further development of genetic and physiological markers that may be tested for improving tolerance of barley to this fungal pathogen.

2.
Mol Plant Microbe Interact ; 32(2): 176-193, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30681911

RESUMO

Ramularia leaf spot disease (RLS), caused by the ascomycete fungus Ramularia collo-cygni, has emerged as a major economic disease of barley. No substantial resistance has been identified, so far, among barley genotypes and, based on the epidemiology of the disease, a quantitative genetic determinacy of RLS has been suggested. The relative contributions of barley and R. collo-cygni genetics to disease infection and epidemiology are practically unknown. Here, we present an integrated genome-wide analysis of host and pathogen transcriptome landscapes identified in a sensitive barley cultivar following infection by an aggressive R. collo-cygni isolate. We compared transcriptional responses in the infected and noninfected leaf samples in order to identify which molecular events are associated with RLS symptom development. We found a large proportion of R. collo-cygni genes to be expressed in planta and that many were also closely associated with the infection stage. The transition from surface to apoplastic colonization was associated with downregulation of cell wall-degrading genes and upregulation of nutrient uptake and resistance to oxidative stresses. Interestingly, the production of secondary metabolites was dynamically regulated within the fungus, indicating that R. collo-cygni produces a diverse panel of toxic compounds according to the infection stage. A defense response against R. collo-cygni was identified in barley at the early, asymptomatic infection and colonization stages. We found activation of ethylene signaling, jasmonic acid signaling, and phenylpropanoid and flavonoid pathways to be highly induced, indicative of a classical response to necrotrophic pathogens. Disease development was found to be associated with gene expression patterns similar to those found at the onset of leaf senescence, when nutrients, possibly, are used by the infecting fungus. These analyses, combining both barley and R. collo-cygni transcript profiles, demonstrate the activation of complex transcriptional programs in both organisms.


Assuntos
Ascomicetos , Hordeum , Interações Hospedeiro-Patógeno , Transcriptoma , Ascomicetos/genética , Ascomicetos/fisiologia , Hordeum/genética , Hordeum/microbiologia , Interações Hospedeiro-Patógeno/genética
3.
Fungal Biol ; 121(9): 798-824, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28800851

RESUMO

Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus higher-level classification within the group is a barrier to further taxonomic revision. We amplified nrLSU, nrITS, and rpb1 genes across the Polyporales, with a special focus on the latter. We combined the new sequences with molecular data generated during the PolyPEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification. Eighteen clades are assigned a family name, including three families described as new (Cerrenaceae fam. nov., Gelatoporiaceae fam. nov., Panaceae fam. nov.) and fifteen others (Dacryobolaceae, Fomitopsidaceae, Grifolaceae, Hyphodermataceae, Incrustoporiaceae, Irpicaceae, Ischnodermataceae, Laetiporaceae, Meripilaceae, Meruliaceae, Phanerochaetaceae, Podoscyphaceae, Polyporaceae, Sparassidaceae, Steccherinaceae). Three clades are given informal names (/hypochnicium,/climacocystis and/fibroporia + amyloporia). Four taxa (Candelabrochete africana, Mycoleptodonoides vassiljevae, Auriporia aurea, and Tyromyces merulinus) cannot be assigned to a family within the Polyporales. The classification proposed here provides a framework for further taxonomic revision and will facilitate communication among applied and basic scientists. A survey of morphological, anatomical, physiological, and genetic traits confirms the plasticity of characters previously emphasized in taxonomy of Polyporales.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Filogenia , Polyporales/classificação , Teorema de Bayes , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , Proteínas Fúngicas/química , Genoma Fúngico/genética , Funções Verossimilhança , Reação em Cadeia da Polimerase , Polyporales/enzimologia , Polyporales/genética , RNA Polimerase II/genética , Alinhamento de Sequência
4.
BMC Genomics ; 17: 584, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27506390

RESUMO

BACKGROUND: Ramularia collo-cygni is a newly important, foliar fungal pathogen of barley that causes the disease Ramularia leaf spot. The fungus exhibits a prolonged endophytic growth stage before switching life habit to become an aggressive, necrotrophic pathogen that causes significant losses to green leaf area and hence grain yield and quality. RESULTS: The R. collo-cygni genome was sequenced using a combination of Illumina and Roche 454 technologies. The draft assembly of 30.3 Mb contained 11,617 predicted gene models. Our phylogenomic analysis confirmed the classification of this ascomycete fungus within the family Mycosphaerellaceae, order Capnodiales of the class Dothideomycetes. A predicted secretome comprising 1053 proteins included redox-related enzymes and carbohydrate-modifying enzymes and proteases. The relative paucity of plant cell wall degrading enzyme genes may be associated with the stealth pathogenesis characteristic of plant pathogens from the Mycosphaerellaceae. A large number of genes associated with secondary metabolite production, including homologs of toxin biosynthesis genes found in other Dothideomycete plant pathogens, were identified. CONCLUSIONS: The genome sequence of R. collo-cygni provides a framework for understanding the genetic basis of pathogenesis in this important emerging pathogen. The reduced complement of carbohydrate-degrading enzyme genes is likely to reflect a strategy to avoid detection by host defences during its prolonged asymptomatic growth. Of particular interest will be the analysis of R. collo-cygni gene expression during interactions with the host barley, to understand what triggers this fungus to switch from being a benign endophyte to an aggressive necrotroph.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Genômica , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Análise por Conglomerados , Biologia Computacional/métodos , Proteínas Fúngicas , Genômica/métodos , Anotação de Sequência Molecular , Fenótipo , Filogenia , Folhas de Planta/microbiologia , Proteoma , Proteômica/métodos , Metabolismo Secundário , Virulência/genética
5.
PLoS One ; 9(4): e95227, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24777067

RESUMO

One new order, one new family, and one new combination are presented, as the result of molecular phylogenetic analyses. The new order Stereopsidales and the new family Stereopsidaceae are described incorporating Stereopsis radicans and S. globosa, formerly Clavulicium globosum. We show that not only do these species represent an old overlooked lineage, but both species harbor cryptic diversity. In addition, a third species, C. macounii, appears as a plausible sister to the new lineage, but there is conflict in the data. All specimens of S. radicans and S. globosa analysed here are from the South and Central Americas; several records of S. radicans have been made also from tropical Asia. We expect the true diversity in this group to be a lot higher than presented in this paper. Stereopsis radicans was formerly included in Polyporales, but a placement within that order is rejected by our data through SH tests. The dataset consisted of four nuclear markers: rpb2, tef1, LSU and SSU, each of which was analysed separately using maximum likelihood and Bayesian inference. Recombination detection tests indicate no plausible recombinations. The potential of S. radicans, S. globosa and C. macounii being amphitallic is briefly discussed.


Assuntos
Agaricales/classificação , Agaricales/genética , Filogenia , Biodiversidade , Evolução Molecular
6.
Mycologia ; 105(6): 1350-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935031

RESUMO

We present a phylogenetic and phylogenomic overview of the Polyporales. The newly sequenced genomes of Bjerkandera adusta, Ganoderma sp., and Phlebia brevispora are introduced and an overview of 10 currently available Polyporales genomes is provided. The new genomes are 39 500 000-49 900 00 bp and encode for 12 910-16 170 genes. We searched available genomes for single-copy genes and performed phylogenetic informativeness analyses to evaluate their potential for phylogenetic systematics of the Polyporales. Phylogenomic datasets (25, 71, 356 genes) were assembled for the 10 Polyporales species with genome data and compared with the most comprehensive dataset of Polyporales to date (six-gene dataset for 373 taxa, including taxa with missing data). Maximum likelihood and Bayesian phylogenetic analyses of genomic datasets yielded identical topologies, and the corresponding clades also were recovered in the 373-taxa dataset although with different support values in some datasets. Three previously recognized lineages of Polyporales, antrodia, core polyporoid and phlebioid clades, are supported in most datasets, while the status of the residual polyporoid clade remains uncertain and certain taxa (e.g. Gelatoporia, Grifola, Tyromyces) apparently do not belong to any of the major lineages of Polyporales. The most promising candidate single-copy genes are presented, and nodes in the Polyporales phylogeny critical for the suprageneric taxonomy of the order are identified and discussed.


Assuntos
Filogenia , Polyporales/classificação , Polyporales/genética , Evolução Molecular , Proteínas Fúngicas/genética , Genômica
7.
Mycologia ; 104(5): 1046-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22492407

RESUMO

Stipitate stereoid fungi are Basidiomycetes with a stipe, a spathulate-to funnel-shaped pileus, a smooth hymenophore, and hyaline, smooth spores. Representatives of the genera Cotylidia, Cymatoderma, Muscinupta, Podoscypha and Stereopsis were subjected to molecular phylogenetic analyses based on nuclear ribosomal large subunit, 5.8S and ITS sequences. For four of the genera the type species was included in analyses. Stereopsis radicans, the type species of Stereopsis, forms a lineage with the corticioid species Clavulicium globosum but could not be placed in any of the presently accepted orders within Agaricomycotina. Stereopsis vitellina falls within the Atheliales, making it the first pileus- and stipe-forming fungus recovered in this order. Cotylidia and Muscinupta again are shown to be members of the Hymenochaetales, whereas Cymatoderma and Podoscypha belong in the Polyporales. Cymatoderma is polyphyletic and Cymatoderma sensu stricto is separated from other stipitate stereoid fungi in the Polyporales, whereas the remaining Cymatoderma species are nested within a well supported clade holding all Podoscypha species but also Abortiporus biennis.


Assuntos
DNA Fúngico/genética , DNA Ribossômico/genética , Carpóforos/genética , Polyporales/genética , Subunidades Ribossômicas Maiores/genética , Filogenia , Análise de Sequência de DNA/métodos
8.
Cladistics ; 28(3): 251-270, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34872189

RESUMO

The phylogeny of the poroid and hydnoid genera Antrodiella, Junghuhnia, and Steccherinum (Polyporales, Basidiomycota) was studied utilizing sequences of the gene regions ITS, nLSU, mtSSU, atp6, rpb2, and tef1. Altogether 148 taxa, represented by 549 sequences, were included in analyses. Results show that most species of these genera form a well supported clade in the Polyporales, called Steccherinaceae, along with 12 other hydnoid and poroid genera. Within the Steccherinaceae, generic concepts need to be revised: no fewer than 15 new genera are needed to accommodate existing and new species. At least 16 transitions have taken place between poroid and hydnoid hymenophore types within the Steccherinaceae, and similar plasticity can be seen in microscopic characters. Nevertheless, natural genera revealed in the analysis can mostly be characterized morphologically and, with few exceptions, poroid and hydnoid species belong to separate genera. The genus Steccherinum is shown to contain both hydnoid and poroid species. Species of the former Antrodiella belong to at least 10 genera within the Steccherinaceae. © The Willi Hennig Society 2011.

9.
Cladistics ; 27(2): 197-203, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34875775

RESUMO

Environmental DNA sequencing efforts of substrates such as soil, wood, and seawater have been found to present very different views of the underlying biological communities compared with efforts based on morphological examination and culture studies. The taxonomic affiliation of many of these environmental sequences cannot be settled with certainty due to the lack of proximate reference sequences in the corpus of public sequence data, and they are typically submitted to the international sequence databases without much indication of their relatedness. The scientific community has proved reluctant to include such unnamed sequences in phylogenetic analyses and taxonomic studies, but the present study shows such a position to be not only largely unwarranted but also potentially unsound. The sequences of 48 published fungal alignments of the nuclear ribosomal internal transcribed spacer region were subjected to similarity searches in the sequence databases to recover environmental sequences with a clear bearing on the respective ingroup. An average of 20 environmental sequences were added to each alignment, and upon rerunning the phylogenetic analyses of each study we found that topological rearrangements involving the original ingroup sequences were observed for no less than 29 (60%) of the studies. In nearly 20% of these cases, the rearrangements were large enough to question or even overthrow at least one conclusion presented in the original studies. The basal branching order was similarly subject to changes in 16% of the applicable studies. Environmental sequences are thus not only relevant in ecological research but form a requisite source of information also in systematics and taxonomy. © The Willi Hennig Society 2010.

10.
FEMS Microbiol Lett ; 296(1): 97-101, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19459974

RESUMO

The advent of new high-throughput DNA-sequencing technologies promises to redefine the way in which fungi and fungal communities--as well as other groups of organisms--are studied in their natural environment. With read lengths of some few hundred base pairs, massively parallel sequencing (pyrosequencing) stands out among the new technologies as the most apt for large-scale species identification in environmental samples. Although parallel pyrosequencing can generate hundreds of thousands of sequences at an exceptional speed, the limited length of the reads may pose a problem to the species identification process. This study explores whether the discrepancy in read length between parallel pyrosequencing and traditional (Sanger) sequencing will have an impact on the perceived taxonomic affiliation of the underlying species. Based on all 39,200 publicly available fungal environmental DNA sequences representing the nuclear ribosomal internal transcribed spacer (ITS) region, the results show that the two approaches give rise to quite different views of the diversity of the underlying samples. Standardization of which subregion from the ITS region should be sequenced, as well as a recognition that the composition of fungal communities as depicted through different sequencing methods need not be directly comparable, appear crucial to the integration of the new sequencing technologies with current mycological praxis.


Assuntos
Biodiversidade , DNA Fúngico/genética , DNA Intergênico/genética , Fungos/classificação , Fungos/genética , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , DNA Fúngico/química , DNA Intergênico/química , Fungos/isolamento & purificação
11.
New Phytol ; 181(2): 471-477, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19121041

RESUMO

The environmental and distributional data associated with fungal internal transcribed spacer (ITS) sequences in GenBank are investigated and a new web-based tool with which these sequences can be explored is introduced. All fungal ITS sequences in GenBank were classified as either identified to species level or insufficiently identified and compared using BLAST. The results are made available as a biweekly updated web service that can be queried to retrieve all insufficiently identified sequences (IIS) associated with any fungal genus. The most commonly available annotation items in GenBank are isolation source (55%); country of origin (50%); and specific host (38%). The molecular sampling of fungi shows a bias towards North America, Europe, China, and Japan whereas vast geographical areas remain effectively unexplored. Mycorrhizal and parasitic genera are on average associated with more IIS than are saprophytic taxa. Glomus, Alternaria, and Tomentella are the genera represented by the highest number of insufficiently identified ITS sequences in GenBank. The web service presented (http://andromeda.botany.gu.se/emerencia.html#genus_search) offers new means, particularly for mycorrhizal and plant pathogenic fungi, to examine the IIS in GenBank in a taxon-oriented framework and to explore their metadata in an easily accessible and time-efficient manner.


Assuntos
Sequência de Bases , DNA Intergênico , Bases de Dados de Ácidos Nucleicos , Fungos/genética , Fungos/classificação , Armazenamento e Recuperação da Informação , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...