Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(13): e202300991, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38568155

RESUMO

We conducted Density Functional Theory calculations to investigate a class of materials with the goal of enabling nitrogen activation and electrochemical ammonia production under ambient conditions. The source of protons at the anode could originate from either water splitting or H2, but our specific focus was on the cathode reaction, where nitrogen is reduced into ammonia. We examined the conventional associative mechanism, dissociative mechanism, and Mars-van Krevelen mechanism on the (111) facets of the NaCl-type structure found in early transition metal carbonitrides, including Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, Sc, Y, and W. We explored the catalytic activity by calculating the free energy of all intermediates along the reaction pathway and constructing free energy diagrams to identify the steps that determine the reaction's feasibility. Additionally, we closely examined the potential for catalyst poisoning within the electrochemical environment, considering the bias required to drive the reaction. Furthermore, we assessed the likelihood of catalyst decomposition and the potential for catalyst regeneration among the most intriguing carbonitrides. Our findings revealed that the only carbonitride catalyst considered here exhibiting both activity and stability, capable of self-regeneration and nitrogen-to-ammonia activation, is NbCN with a low potential-determining step energy of 0.58 eV. This material can facilitate ammonia formation via a mixed associative-MvK mechanism. In contrast, other carbonitrides of this crystallographic orientation are likely to undergo decomposition, reverting to their parent metals under operational conditions.

2.
Nanoscale ; 16(10): 5242-5256, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38362911

RESUMO

The structure and catalytic properties of Cu nanoclusters of sizes between 55 and 147 atoms were examined to understand if small Cu clusters could provide enhancement over traditional catalysts for the electrocatalysis of CO2 to CO and carbon-based fuels, such as CH4 and CH3OH, compared to bulk Cu surfaces and large Cu nanoparticles. Clusters studied included Cu55, Cu78, Cu101, Cu124, and Cu147, the structures of which were determined using global optimisation. The majority of Cu clusters examined were icosahedral, including the perfect closed-shell, partial-shell, elongated and distorted icosahedral clusters. Free energy diagrams for the reduction of CO2 showed the potential required for the formation of CO is notably smaller for all cluster sizes considered, relative to Cu(111). Less variation is observed for the limiting potential for the formation of CH4 and CH3OH. However, it was found that clusters that are either a distorted motif or contain vacancy defects yielded the best activity and provide an interesting synthesis target for future experiments.

3.
ChemSusChem ; 17(7): e202301399, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38100130

RESUMO

In this Editorial, Guest Editors Douglas R. MacFarlane, Egill Skúlason, Hideo Hosono and Minhua Shao discuss the newly emerging field of electrochemical nitrogen reduction reaction (NRR) in the Special Issue of ChemSusChem on Sustainable Ammonia Synthesis.

4.
ChemSusChem ; 16(22): e202300947, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37702376

RESUMO

The development of a low-cost, energy-efficient, and environmentally friendly alternative to the currently utilized Haber-Bosch process to produce ammonia is of great importance. Ammonia is an essential chemical used in fertilizers and a promising high-density fuel source. The nitrogen reduction reaction (NRR) has been explored intensively as a potential avenue for ammonia production using water as proton source, but to this day a catalyst capable of producing this chemical at high Faradaic efficiency (FE) and commercial yield and rates has not been reported. Here, we investigate the activity of transition metal carbide (TMC) surfaces in the (100) facets of the rocksalt (RS) structure as potential catalysts for the NRR. In this study, we use density functional theory (DFT) to model reaction pathways, estimate stability, assess kinetic barriers, and compare adsorbate energies to determine the overall performance of each TMC surface. For pristine TMC surfaces (with no defects) we find that none of the studied TMCs possess both exergonic adsorption of nitrogen and the capability to selectively protonate nitrogen to form ammonia in the desired aqueous solution. ZrC, however, is shown to be a potential catalyst if used in a non-aqueous electrolyte. To circumvent the endergonic adsorption of nitrogen onto the surface, a carbon vacancy was introduced. This provides a well-defined high coordination active site on the surface. In the presence of a vacancy VC, NbC, and WC showed efficient nitrogen adsorption, selectivity towards ammonia, and a low overpotential (OP). NbC did, however, display an unfeasible kinetic barrier to nitrogen dissociation for ambient-condition purposes, and thus it is suggested for high tempearture/pressure ammonia synthesis. Both WC and VC in their RS (100) structure are promising materials for experimental investigations in aqueous electrolytes, and ZrC could potentially be interesting for non-aqueous electrolytic systems.

5.
J Phys Chem Lett ; 13(26): 6123-6129, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35759374

RESUMO

The electrochemical nitrogen oxidation reaction (NOR) has recently drawn attention due to promising experimental and theoretical results. It provides an alternative, environmentally friendly route to directly synthesize nitrate from N2(g). There is to date a limited number of investigations focused on the electrochemical NOR. Herein, we present a detailed computational study on the kinetics of both the NOR and the competing oxygen evolution reaction (OER) on the TiO2(110) electrode under ambient conditions. The use of grand canonical density functional theory in combination with the linearized Poisson-Boltzmann equation allows a continuous tuning of the explicitly applied electrical potential. We find that the OER may either promote or suppress the NOR on TiO2(110) depending on reaction conditions. The detailed atomistic insights provided on the mechanisms of these competing processes make possible further developments toward a direct electrochemical NOR process.

6.
J Chem Theory Comput ; 17(10): 6405-6415, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550689

RESUMO

Experimental studies of the oxygen reduction reaction (ORR) at nitrogen-doped graphene electrodes have reported a remarkably low overpotential, on the order of 0.5 V, similar to Pt-based electrodes. Theoretical calculations using density functional theory have lent support to this claim. However, other measurements have indicated that transition metal impurities are actually responsible for the ORR activity, thereby raising questions about the reliability of both the experiments and the calculations. To assess the accuracy of the theoretical calculations, various generalized gradient approximation (GGA), meta-GGA, and hybrid functionals are employed here and calibrated against high-level wave-function-based coupled-cluster calculations (CCSD(T)) of the overpotential as well as self-interaction corrected density functional calculations and published quantum Monte Carlo calculations of O adatom binding to graphene. The PBE0 and HSE06 hybrid functionals are found to give more accurate results than the GGA and meta-GGA functionals, as would be expected, and for a low dopant concentration, 3.1%, the overpotential is calculated to be 1.0 V. The GGA and meta-GGA functionals give a lower estimate by as much as 0.4 V. When the dopant concentration is doubled, the overpotential calculated with hybrid functionals decreases, while it increases in GGA functional calculations. The opposite trends result from different potential-determining steps, the *OOH species being of central importance in the hybrid functional calculations, while the reduction of *O determines the overpotential obtained in GGA and meta-GGA calculations. The results presented here are mainly based on calculations of periodic representations of the system, but a comparison is also made with molecular flake models that are found to give erratic results due to finite size effects and geometric distortions during energy minimization. The presence of the electrolyte has not been taken into account explicitly in the calculations presented here but is estimated to be important for definitive calculations of the overpotential.

7.
J Am Chem Soc ; 142(40): 17105-17118, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32902970

RESUMO

In catalysts for CO2 hydrogenation, the interface between metal nanoparticles (NPs) and the support material is of high importance for the activity and reaction selectivity. In Pt NP-containing UiO Zr-metal-organic frameworks (MOFs), key intermediates in methanol formation are adsorbed at open Zr-sites at the Pt-MOF interface. In this study, we investigate the dynamic role of the Zr-node and the influence of H2O on the CO2 hydrogenation reaction at 170 °C, through steady state and transient isotope exchange experiments, H2O cofeed measurements, and density functional theory (DFT) calculations. The study revealed that an increased number of Zr-node defects increase the formation rates to both methanol and methane. Transient experiments linked the increase to a higher number of surface intermediates for both products. Experiments involving either dehydrated or prehydrated Zr-nodes showed higher methanol and methane formation rates over the dehydrated Zr-node. Transient experiments suggested that the difference is related to competitive adsorption between methanol and water. DFT calculations and microkinetic modeling support this conclusion and give further insight into the equilibria involved in the competitive adsorption process. The calculations revealed weaker adsorption of methanol in defective or dehydrated nodes, in agreement with the larger gas phase concentration of methanol observed experimentally. The microkinetic model shows that [Zr2(µ-O)2]4+ and [Zr2(µ-OH)(µ-O)(OH)(H2O)]4+ are the main surface species when the concentration of water is lower than the number of defect sites. Lastly, although addition of water was found to promote methanol desorption, water does not change the methanol steady state reaction rate, while it has a substantial inhibiting effect on CH4 formation. These results indicate that water can be used to increase the reaction selectivity to methanol and encourages further detailed investigations of the catalyst system.

8.
Angew Chem Int Ed Engl ; 59(51): 22938-22942, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857426

RESUMO

This study highlights the importance of following a strict protocol for Nafion membrane pretreatment for electrochemical nitrogen reduction reaction experiments. Atmospheric ammonia pollution can be introduced to the experimental setup through membranes and interpreted falsely as catalysis product from N2 . The sources of ammonia contamination vary drastically between locations worldwide and even within the same location between days depending on temperature, wind direction, fertilizer use, and manure accumulation in its vicinity. The study shows that significant amounts of ammonium is accumulated in the membranes after commonly practiced pretreatment methods, where the amount depends on the ammonia concentration in the surrounding of the experiment. Therefore, we introduce a new pretreatment method which removes all the ammonium in the membrane. The membranes can be stored for several days but a short final step in the method needs to be carried out right before NRR experiments.


Assuntos
Amônia/análise , Polímeros de Fluorcarboneto/química , Nitrogênio/química , Técnicas Eletroquímicas , Oxirredução , Temperatura
9.
Chem Sci ; 11(35): 9542-9553, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34094219

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) on RuO2 and RuO2-based electrodes has been shown experimentally to produce high yields of methanol, formic acid and/or hydrogen while methane formation is not detected. This CO2RR selectivity on RuO2 is in stark contrast to copper metal electrodes that produce methane and hydrogen in the highest yields whereas methanol is only formed in trace amounts. Density functional theory calculations on RuO2(110) where only adsorption free energies of intermediate species are considered, i.e. solvent effects and energy barriers are not included, predict however, that the overpotential and the potential limiting step for both methanol and methane are the same. In this work, we use both ab initio molecular dynamics simulations at room temperature and total energy calculations to improve the model system and methodology by including both explicit solvation effects and calculations of proton-electron transfer energy barriers to elucidate the reaction mechanism towards several CO2RR products: methanol, methane, formic acid, CO and methanediol, as well as for the competing H2 evolution. We observe a significant difference in energy barriers towards methane and methanol, where a substantially larger energy barrier is calculated towards methane formation than towards methanol formation, explaining why methanol has been detected experimentally but not methane. Furthermore, the calculations show why RuO2 also catalyzes the CO2RR towards formic acid and not CO(g) and methanediol, in agreement with experimental results. However, our calculations predict RuO2 to be much more selective towards H2 formation than for the CO2RR at any applied potential. Only when a large overpotential of around -1 V is applied, can both formic acid and methanol be evolved, but low faradaic efficiency is predicted because of the more facile H2 formation.

10.
iScience ; 23(12): 101803, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095781

RESUMO

We report relations between nitrogen-binding-energy descriptors obtained from experimental thermochemical data and limiting potentials from density functional theory data. We use the relations to build the largest volcano plot for nitrogen reduction reaction (NRR). We found that (1) Mn, Ga, and In are overlooked catalysts and (2) there are unidentified materials on the top of the volcano. Using experimental exchange current densities of hydrogen evolution reaction (HER) and Pourbaix diagrams we have identified conditions at which Mn, Ga, and In remain stable in water and selectively catalyze NRR over HER. We found that Fe, Au, Cu, Bi, and Pd, on contrary to what was reported earlier, need smaller applied potentials to start the onset of HER than NRR in water. We make a critical discussion about them and other candidates and we believe our results can be used to identify false positive measurements in the research field.

11.
J Am Chem Soc ; 142(2): 999-1009, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31794194

RESUMO

Metal-organic frameworks (MOFs) show great prospect as catalysts and catalyst support materials. Yet, studies that address their dynamic, kinetic, and mechanistic role in target reactions are scarce. In this study, an exceptionally stable MOF catalyst consisting of Pt nanoparticles (NPs) embedded in a Zr-based UiO-67 MOF was subject to steady-state and transient kinetic studies involving H/D and 13C/12C exchange, coupled with operando infrared spectroscopy and density functional theory (DFT) modeling, targeting methanol formation from CO2/H2 feeds at 170 °C and 1-8 bar pressure. The study revealed that methanol is formed at the interface between the Pt NPs and defect Zr nodes via formate species attached to the Zr nodes. Methanol formation is mechanistically separated from the formation of coproducts CO and methane, except for hydrogen activation on the Pt NPs. Careful analysis of transient data revealed that the number of intermediates was higher than the number of open Zr sites in the MOF lattice around each Pt NP. Hence, additional Zr sites must be available for formate formation. DFT modeling revealed that Pt NP growth is sufficiently energetically favored to enable displacement of linkers and creation of open Zr sites during pretreatment. However, linker displacement during formate formation is energetically disfavored, in line with the excellent catalyst stability observed experimentally. Overall, the study provides firm evidence that methanol is formed at the interface of Pt NPs and linker-deficient Zr6O8 nodes resting on the Pt NP surface.

12.
Nanoscale ; 11(40): 18683-18690, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31588951

RESUMO

Replacing the state-of-the-art fuel cell catalyst platinum for a cheaper and abundant alternative would make the hydrogen economy viable. Both nitrogen-doped graphene and nitrogen-doped carbon nanotubes (N-CNT) have been shown to be capable of acting as a metal-free catalyst for the oxygen reduction reaction (ORR). Until now, most of the research has been focused on the nitrogen doping and less on the structure of the nanotubes. Here, density functional theory calculations are used to calculate trends in ORR catalytic activity of graphitic-N-doped CNTs of different sizes and chirality of selected tubes between (4,0) and (20,10). This includes 13 armchair tubes, 17 zig-zag tubes and 42 chiral tubes, or 72 N-CNTs in total. 22 tubes are predicted to have a lower overpotential than the platinum catalyst and 46 tubes have lower overpotential than nitrogen doped graphene. The most active tubes are (14,7), (12,6), and (8,8), and display an overpotential of around 0.35 V, or 0.1 V lower overpotential than predicted on Pt(111) with the same level of theory.

13.
Phys Chem Chem Phys ; 21(31): 17142-17151, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31339149

RESUMO

In this work we compute high-coverage hydrogen adsorption energies and geometries on the stepped platinum surfaces Pt(211) and Pt(533) which contain a (100)-step type and the Pt(221) and Pt(553) surface with a (111) step edge. We discuss these results in relation to ultra-high-vacuum temperature programmed desorption (TPD) data to elucidate the origin of the desorption features. Our results indicated that on surfaces with a (100)-step type, two distinct ranges of adsorption energy for the step and terrace are observed, which mirrors the TPD spectra for which we find a clear separation of the desorption peaks. For the (111) step type, the TPD spectra show much less separation of the step and terrace features, which we assign to the low individual adsorption energies for H atoms on this step edge. From our results we obtain a much clearer understanding of the surface-hydrogen bonding at high coverages and the origin of the different TPD features present for the two step types studied.


Assuntos
Teoria da Densidade Funcional , Hidrogênio/química , Platina/química , Adsorção , Cristalização , Ligação de Hidrogênio , Temperatura , Termodinâmica
14.
ChemSusChem ; 12(18): 4265-4273, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31313891

RESUMO

The nitrogen reduction reaction was investigated on the surfaces of 18 different stable transition metal sulfides using density functional theory calculations. YS, ScS, and ZrS were modeled in the rocksalt structure with the (1 0 0) facet; TiS, VS, CrS, NbS, NiS, and FeS in NiAs-type structure with the (1 1 1) facet; and MnS2 , CoS2 , IrS2 , CuS2 , OsS2 , FeS2 , RuS2 , RhS2 , and NiS2 in pyrite structure for both the (1 0 0) and (1 1 1) orientations. As the first step towards determination of sulfides that are less prone to hydrogen evolution, the competition between adsorption of NNH and H (for the associative mechanism), and between adsorption of N and H (for the dissociative mechanism) on these surfaces was considered. The catalytic activity through both the associative and dissociative mechanisms was explored and the overpotential required for electrochemical ammonia formation is reported. The scaling relations and volcano plots were constructed with free energy of adsorption of NNH or N on the surface as the descriptor. RuS2 was observed as the most active sulfide that could catalyze nitrogen reduction to ammonia at potentials around -0.3 V through the associative mechanism. NbS, CrS, TiS, and VS are also promising candidates for both the associative and dissociative mechanisms with overpotentials for nitrogen reduction around 0.7-1.1 V.

16.
Faraday Discuss ; 195: 619-636, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27711818

RESUMO

An atomic scale model of the electrical double layer is used to calculate the mechanism and rate of electrochemical reduction of CO2 as well as H2 formation at a Pt(111) electrode. The water layer contains solvated protons and the electrode has excess electrons at the surface. Density functional theory within the generalized gradient approximation is used to describe the electronic structure while the mechanism and activation energy of the various elementary reactions is obtained by calculating minimum energy paths using the nudged elastic band method. The applied electrical potential is deduced from the calculated work function. The optimal reaction mechanism for CO2 reduction to either methane or methanol is found and the estimated rate compared with that of the competing reaction, H2 formation. When the free energy of only the intermediates and reactants is taken into account, not the activation energy, Pt(111) would seem to be a good electrocatalyst for CO2 reduction, significantly better than Cu(111). This, however, contradicts experimental findings. Detailed calculations reported here show that the activation energy for CO2 reduction is high for both Heyrovsky and Tafel mechanisms on Pt(111) in the relevant range of applied potential. The rate-limiting step of the Heyrovsky mechanism, *COOH + H+ + e- → *CO + H2O, is estimated to have an activation energy of 0.95 eV at -0.9 V vs. standard hydrogen electrode. Under the same conditions, the activation energy for H2 formation is estimated to be only 0.5 eV. This explains why attempts to reduce CO2 using platinum electrodes have produced only H2. A comparison is made with analogous results for Cu(111) [J. Hussain et al., Procedia Comput. Sci., 2015, 51, 1865] where a reaction mechanism with low activation energy for CO2 electroreduction to methane was identified. The difference between the two electrocatalysts is discussed.

17.
Phys Chem Chem Phys ; 17(7): 4909-18, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25446373

RESUMO

Commercial design of a sustainable route for on-site production of ammonia represents a potential economic and environmental breakthrough. In an analogous process to the naturally occurring enzymatic mechanism, synthesis of ammonia could be achieved in an electrochemical cell, in which electricity would be used to reduce atmospheric nitrogen and water into ammonia at ambient conditions. To date, such a process has not been realized due to slow kinetics and low faradaic efficiencies. Although progress has been made in this regard, at present there exists no device that can produce ammonia efficiently from air and water at room temperature and ambient pressure. In this work, a scheme is presented in which electronic structure calculations are used to screen for catalysts that are stable, active and selective towards N2 electro-reduction to ammonia, while at the same time suppressing the competing H2 evolution reaction. The scheme is applied to transition metal nitride catalysts. The most promising candidates are the (100) facets of the rocksalt structures of VN and ZrN, which show promise of producing ammonia in high yield at low onset potentials.

18.
Phys Chem Chem Phys ; 15(17): 6323-32, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23518690

RESUMO

The interaction of hydrogen with the Pt(110)-(1×2) surface is studied using temperature programmed desorption (TPD) measurements and density functional theory (DFT) calculations. The ridges in this surface resemble edges between micro-facets of Pt nano-particle catalysts used for hydrogen evolution (HER) and hydrogen oxidation reactions (HOR). The binding energy and activation energy for desorption are found to depend strongly on hydrogen coverage. At low coverage, the strongest binding sites are found to be the low coordination bridge sites at the edge and this is shown to agree well with the He-atom interaction and work function change which have been reported previously. At higher hydrogen coverage, the higher coordination sites on the micro-facet and in the trough get populated. The simulated TPD spectra based on the DFT results are in close agreement with our experimental spectra and provide microscopic interpretation of the three measured peaks. The lowest temperature peak obtained from the surface with highest hydrogen coverage does not correspond to desorption directly from the weakest binding sites, the trough sites, but is due to desorption from the ridge sites, followed by subsequent, thermally activated rearrangement of the H-adatoms. The reason is low catalytic activity of the Pt-atoms at the trough sites and large reduction in the binding energy at the ridge sites at high coverage. The intermediate temperature peak corresponds to desorption from the micro-facet. The highest temperature peak again corresponds to desorption from the ridge sites, giving rise to a re-entrant mechanism for the thermal desorption.

19.
J Chem Phys ; 137(16): 164705, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-23126735

RESUMO

Local density of states and electric charge in regions defined for individual atoms and molecules using grid based Bader analysis is presented for N(2) and CO(2) adsorbed on a platinum electrode in the presence of an applied electric field. When the density of states is projected onto Bader regions, the partial density of states for the various subregions correctly sums up to the total density of states for the whole system, unlike the commonly used projection onto spheres which results in missing contributions from some regions while others are over counted, depending on the radius chosen. The electrode is represented by a slab with a missing row reconstructed Pt(110)-(1 × 2) surface to model an edge between micro-facets on the surface of a nano-particle catalyst. For both N(2) and CO(2), a certain electric field window leads to adsorption. The binding of N(2) to the electrode is mainly due to polarization of the molecule but for CO(2) hybridization occurs between the molecular states and the states of the Pt electrode.

20.
Phys Rev Lett ; 108(15): 156101, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22587266

RESUMO

Calculations of the desorption of hydrogen from Pt(110)-(1×2), a surface used to model nanoparticle edge sites, show the activation energy varying strongly with hydrogen coverage, from 0.8 to 0.3 eV. The predicted temperature programed desorption spectra agree well with experiments, but the formation of the hydrogen molecules occurs only at two types of sites on the surface even though three peaks are observed. The lowest and highest temperature peaks result from desorption from the same strong binding sites at the ridge, while desorption from the weakest binding trough sites is insignificant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...