Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Drug Deliv ; 2012: 951741, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22518317

RESUMO

Chemotherapeutic drugs are widely used for the treatment of cancer; however, use of these drugs is often associated with patient toxicity and poor tumor delivery. Micellar drug carriers offer a promising approach for formulating and achieving improved delivery of hydrophobic chemotherapeutic drugs; however, conventional micelles do not have long-term stability in complex biological environments such as plasma. To address this problem, a novel triblock copolymer has been developed to encapsulate several different hydrophobic drugs into stable polymer micelles. These micelles have been engineered to be stable at low concentrations even in complex biological fluids, and to release cargo in response to low pH environments, such as in the tumor microenvironment or in tumor cell endosomes. The particle sizes of drugs encapsulated ranged between 30-80 nm, with no relationship to the hydrophobicity of the drug. Stabilization of the micelles below the critical micelle concentration was demonstrated using a pH-reversible crosslinking mechanism, with proof-of-concept demonstrated in both in vitro and in vivo models. Described herein is polymer micelle drug delivery system that enables encapsulation and stabilization of a wide variety of chemotherapeutic drugs in a single platform.

2.
J Drug Deliv ; 2011: 869027, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22187652

RESUMO

Polymer micelles are promising drug delivery vehicles for the delivery of anticancer agents to tumors. Often, anticancer drugs display potent cytotoxic effects towards cancer cells but are too hydrophobic to be administered in the clinic as a free drug. To address this problem, a polymer micelle was designed using a triblock copolymer (ITP-101) that enables hydrophobic drugs to be encapsulated. An SN-38 encapsulated micelle, IT-141, was prepared that exhibited potent in vitro cytotoxicity against a wide array of cancer cell lines. In a mouse model, pharmacokinetic analysis revealed that IT-141 had a much longer circulation time, plasma exposure, and tumor exposure compared to irinotecan. IT-141 was also superior to irinotecan in terms of antitumor activity, exhibiting greater tumor inhibition in HT-29 and HCT116 colorectal cancer xenograft models at half the dose of irinotecan. The antitumor effect of IT-141 was dose-dependent and caused complete growth inhibition and tumor regression at well-tolerated doses. Varying the specific concentration of SN-38 within the IT-141 micelle had no detectible effect on this antitumor activity, indicating no differences in activity between different IT-141 formulations. In summary, IT-141 is a potent micelle-based chemotherapy that holds promise for the treatment of colorectal cancer.

3.
Langmuir ; 21(1): 191-4, 2005 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-15620302

RESUMO

The self-assembly of nanoparticles at fluid interfaces, driven by the reduction in interfacial energy, was investigated. With spherical, tri-n-octyl-phosphine-oxide covered cadmium selenide (CdSe) nanoparticles (1-8 nm), thermal fluctuations compete with the interfacial segregation giving rise to a size-dependent self-assembly of the particles. The structure of the nanoparticle assembly was studied using electron microscopy, atomic force microscopy, and X-ray scattering in situ, which indicate that the particles form a densely packed monolayer. The energetics of the adsorption of nanoparticles onto the interface was revealed by time-dependent fluorescence studies on a mixture of two different sized nanoparticles at the interface. The dynamics of the nanoparticles at the fluid interface, probed using fluorescence photobleaching methods, suggests a liquid-like behavior. The results have implications in the design of hierarchical self-assemblies of nanoparticles for the one-step fabrication of devices on multiple length scales.

5.
J Am Chem Soc ; 126(36): 11322-5, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15355115

RESUMO

In polymernanoparticle composites, uniform dispersion of the nanoparticles carries advantages over cases where nanoparticle aggregation dominates. Such dispersion has been particularly difficult to obtain in the case of composites prepared from nanoparticles and conjugated polymers. Here, we show that cadmium selenide nanocrystals, or quantum dots, can be integrated into thin films of poly(para-phenylene vinylene) (PPV) without aggregation. The two key departures from previous studies of quantum-dot/electronic polymer composites are (1) the synthesis of high-quality quantum dots directly in novel, functional ligands, thus eliminating the need for ligand exchange, and (2) polymerization chemistry that grafts PPV to the quantum dot surface. Solid-state photoluminescence spectra of composite materials prepared by these novel techniques reveal the critical importance of the quantum dot-polymer interface that will enable new investigations in nanoparticle-based light-emitting devices.

6.
Nat Mater ; 3(5): 302-6, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15098023

RESUMO

The combination of two self-assembly processes on different length scales leads to the formation of hierarchically structured nanoparticle arrays. Here, the formation of spherical cavities, or 'breath figures'-made by the condensation of micrometre-sized water droplets on the surface of a polymer solution-that self-assemble into a well-ordered hexagonal array, is combined with the self-assembly of CdSe nanoparticles at the polymer solution-water droplet interface. Complete evaporation of the solvent and water confines the particle assembly to an array of spherical cavities and allows for ex situ investigation. Fluorescence confocal, transmission electron and scanning electron microscope images show the preferential segregation of the CdSe nanoparticles to the polymer solution-water interface where they form a 5-7-nm-thick layer, thus functionalizing the walls of the holes. This process opens a new route to fabricating highly functionalized ordered microarrays of nanoparticles, potentially useful in sensory, separation membrane or catalytic applications.


Assuntos
Compostos de Cádmio/química , Cristalização/métodos , Nanotecnologia/métodos , Nanotubos/química , Compostos de Selênio/química , Água/química , Compostos de Cádmio/síntese química , Teste de Materiais , Tamanho da Partícula , Poliestirenos/química , Porosidade , Compostos de Selênio/síntese química , Propriedades de Superfície , Tensão Superficial
7.
J Am Chem Soc ; 125(42): 12690-1, 2003 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-14558800

RESUMO

The fabrication of functional nanostructured materials for sensing, encapsulation and delivery requires practical approaches to self-assembly on multiple length scales and the synthesis of tough yet permeable structures. Here, the self-assembly of functionalized, photoluminescent nanoparticles at liquid interfaces, followed by cross-linking of the associated ligands, affords robust membranes that maintain their integrity even when they are removed from the interface. These composite membranes, nanometers in thickness, are elastic yet permeable and have potential applications involving controlled permeability and diffusion. Cadmium selenide (CdSe) nanoparticles are used, since their inherent photoluminescence offers a direct way to probe the spatial organization of the particles. Functionalized ligands attached to the nanoparticles provide an effective means to stabilize the interfacial assembly by cross-linking. The concepts shown are adaptable to other type of nanoparticles, ligands, and solvent combinations.


Assuntos
Membranas Artificiais , Nanotecnologia/métodos , Coloides/química , Microscopia Confocal , Tamanho da Partícula , Propriedades de Superfície
8.
Chem Commun (Camb) ; (1): 52-3, 2003 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-12610961

RESUMO

Amphiphilic cadmium selenide (CdSe) nanoparticles were prepared by surface functionalization with novel ligands 1 and 2, composed of pyridine moieties substituted in the 4-position with polyethylene glycol (PEG) chains.

9.
J Am Chem Soc ; 124(20): 5729-33, 2002 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12010046

RESUMO

Cadmium selenide nanoparticles, prepared by known methods, were stabilized with functional phosphine oxide 1, then used to support the polymerization of cyclic olefins radially outward from the surface by ruthenium-catalyzed ring-opening metathesis polymerization (ROMP). The conversion of compound 1 into the new metathesis catalyst 3 by carbene exchange and the subsequent polymerization of cyclic olefins were observed spectroscopically by (1)H NMR to afford for example CdSe-polycyclooctene composite 6. Transmission electron micrographs on thin films of these composites showed good nanoparticle dispersion. This is in stark contrast to the substantial nanoparticle aggregation observed when similar polymerizations were performed in the presence of conventional TOPO-covered nanoparticles. The methods reported here to prepare composite product 6 are applicable to other cyclic olefins, and suggest that this chemistry will be useful for incorporating CdSe nanoparticles into a wide variety of polymer matrices.


Assuntos
Alcenos/química , Compostos de Cádmio/química , Hidrocarbonetos Cíclicos/química , Compostos Organofosforados/química , Compostos de Selênio/química , Nanotecnologia , Octanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...