Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(3): 607-621.e9, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38154461

RESUMO

We present a method, named Mx-TOP, for profiling of three epigenetic regulatory layers-chromatin accessibility, general DNA modification, and DNA hydroxymethylation-from a single library. The approach is based on chemo-enzymatic covalent tagging of unmodified CG sites and hydroxymethylated cytosine (5hmC) along with GC sites in chromatin, which are then mapped using tag-selective base-resolution TOP-seq sequencing. Our in-depth validation of the approach revealed its sensitivity and informativity in evaluating chromatin accessibility and DNA modification interactions that drive transcriptional regulation. We employed the technology in a study of chromatin and DNA demethylation dynamics during in vitro neuronal differentiation. The study highlighted the involvement of gene body 5hmC in modulating an extensive decoupling between promoter accessibility and transcription. The importance of 5hmC in chromatin remodeling was further demonstrated by the observed resistance of the developmentally acquired open loci to the global 5hmC erasure in neuronal progenitors.


Assuntos
Cromatina , Metilação de DNA , Cromatina/genética , Citosina , Regulação da Expressão Gênica , DNA/metabolismo , 5-Metilcitosina
2.
Cell Rep ; 32(11): 108155, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937122

RESUMO

Due to an extreme rarity of 5-carboxylcytosine (5caC) in the mammalian genome, investigation of its role brings a considerable challenge. Methods based on bisulfite sequencing have been proposed for genome-wide 5caC analysis. However, bisulfite-based sequencing of scarcely abundant 5caC demands significant experimental and computational resources, increasing sequencing cost. Here, we present a bisulfite-free approach, caCLEAR, for high-resolution mapping of 5caCGs. The method uses an atypical activity of the methyltransferase eM.SssI to remove a carboxyl group from 5caC, generating unmodified CGs, which are localized by uTOP-seq sequencing. Validation of caCLEAR on model DNA systems and mouse ESCs supports the suitability of caCLEAR for analysis of 5caCGs. The 5caCG profiles of naive and primed pluripotent ESCs reflect their distinct demethylation dynamics and demonstrate an association of 5caC with gene expression. Generally, we demonstrate that caCLEAR is a robust economical approach that could help provide deeper insights into biological roles of 5caC.


Assuntos
Citosina/análogos & derivados , Genoma , Sulfitos/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Citosina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...