Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 65(29): 5847-5859, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28650629

RESUMO

The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U50= 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M50= 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.


Assuntos
Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/metabolismo , Glycine max/metabolismo , Herbicidas/química , Herbicidas/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacologia , Resistência a Herbicidas , Herbicidas/farmacologia , Cinética , Glycine max/química , Glycine max/efeitos dos fármacos
2.
J Vis Exp ; (103)2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26383604

RESUMO

In order to isolate and accurately determine rates of herbicide metabolism in an obligate-outcrossing dicot weed, waterhemp (Amaranthus tuberculatus), we developed an excised leaf assay combined with a vegetative cloning strategy to normalize herbicide uptake and remove translocation as contributing factors in herbicide-resistant (R) and -sensitive (S) waterhemp populations. Biokinetic analyses of organic pesticides in plants typically include the determination of uptake, translocation (delivery to the target site), metabolic fate, and interactions with the target site. Herbicide metabolism is an important parameter to measure in herbicide-resistant weeds and herbicide-tolerant crops, and is typically accomplished with whole-plant tests using radiolabeled herbicides. However, one difficulty with interpreting biokinetic parameters derived from whole-plant methods is that translocation is often affected by rates of herbicide metabolism, since polar metabolites are usually not mobile within the plant following herbicide detoxification reactions. Advantages of the protocol described in this manuscript include reproducible, accurate, and rapid determination of herbicide degradation rates in R and S populations, a substantial decrease in the amount of radiolabeled herbicide consumed, a large reduction in radiolabeled plant materials requiring further handling and disposal, and the ability to perform radiolabeled herbicide experiments in the lab or growth chamber instead of a greenhouse. As herbicide resistance continues to develop and spread in dicot weed populations worldwide, the excised leaf assay method developed and described herein will provide an invaluable technique for investigating non-target site-based resistance due to enhanced rates of herbicide metabolism and detoxification.


Assuntos
Amaranthus/metabolismo , Herbicidas/metabolismo , Plantas Daninhas/metabolismo , Produtos Agrícolas/metabolismo , Resistência a Herbicidas , Herbicidas/farmacocinética , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...