Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0305036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848392

RESUMO

PURPOSE: Stereopsis is a critical visual function, however clinical stereotests are time-consuming, coarse in resolution, suffer memorization artifacts, poor repeatability, and low agreement with other tests. Foraging Interactive D-prime (FInD) Stereo and Angular Indication Measurement (AIM) Stereo were designed to address these problems. Here, their performance was compared with 2-Alternative-Forced-Choice (2-AFC) paradigms (FInD Stereo only) and clinical tests (Titmus and Randot) in 40 normally-sighted and 5 binocularly impaired participants (FInD Stereo only). METHODS: During FInD tasks, participants indicated which cells in three 4*4 charts of bandpass-filtered targets (1,2,4,8c/° conditions) contained depth, compared with 2-AFC and clinical tests. During the AIM task, participants reported the orientation of depth-defined bars in three 4*4 charts. Stereoscopic disparity was adaptively changed after each chart. Inter-test agreement, repeatability and duration were compared. RESULTS: Test duration was significantly longer for 2-AFC (mean = 317s;79s per condition) than FInD (216s,18s per chart), AIM (179s, 60s per chart), Titmus (66s) or RanDot (97s). Estimates of stereoacuity differed across tests and were higher by a factor of 1.1 for AIM and 1.3 for FInD. No effect of stimulus spatial frequency was found. Agreement among tests was generally low (R2 = 0.001 to 0.24) and was highest between FInD and 2-AFC (R2 = 0.24;p<0.01). Stereoacuity deficits were detected by all tests in binocularly impaired participants. CONCLUSIONS: Agreement among all tests was low. FInD and AIM inter-test agreement was comparable with other methods. FInD Stereo detected stereo deficits and may only require one condition to identify these deficits. AIM and FInD are response-adaptive, self-administrable methods that can estimate stereoacuity reliably within one minute.


Assuntos
Percepção de Profundidade , Visão Binocular , Humanos , Percepção de Profundidade/fisiologia , Adulto , Masculino , Feminino , Adulto Jovem , Visão Binocular/fisiologia , Pessoa de Meia-Idade , Testes Visuais/métodos , Idoso
2.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895262

RESUMO

Amblyopia is a developmental disorder associated with reduced performance in visually guided tasks, including binocular navigation within natural environments. To help understand the underlying neurological disorder, we used fMRI to test the impact of amblyopia on the functional organization of scene-selective cortical areas, including the posterior intraparietal gyrus scene-selective (PIGS) area, a recently discovered region that responds selectively to ego-motion within naturalistic environments (Kennedy et al., 2024). Nineteen amblyopic adults (10 female) and thirty age-matched controls (12 female) participated in this study. Amblyopic participants spanned a wide range of amblyopia severity, based on their interocular visual acuity difference and stereoacuity. The visual function questionnaire (VFQ-39) was used to assess the participants' perception of their visual capabilities. Compared to controls, we found weaker scene-selective activity within the PIGS area in amblyopic individuals. By contrast, the level of scene-selective activity across the occipital place area (OPA), parahippocampal place area (PPA), and retrosplenial cortex (RSC)) remained comparable between amblyopic and control participants. The subjects' scores on "general vision" (VFQ-39 subscale) correlated with the level of scene-selective activity in PIGS. These results provide novel and direct evidence for amblyopia-related changes in scene-processing networks, thus enabling future studies to potentially link these changes across the spectrum of documented disabilities in amblyopia.

3.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405701

RESUMO

We employed high-resolution functional MRI (fMRI) to distinguish the impacts of anisometropia and strabismus (the two most frequent causes of amblyopia) on the evoked ocular dominance (OD) response. Sixteen amblyopic participants (8 females), comprising 8 individuals with strabismus, 7 with anisometropia, 1 with deprivational amblyopia, along with 8 individuals with normal visual acuity (1 female), participated in this study for whom, we measured the difference between the response to stimulation of the two eyes, across early visual areas (V1-V4). In controls, as expected from the organization of OD columns, the evoked OD response formed a striped pattern that was mostly confined to V1. Compared to controls, the OD response in amblyopic participants formed larger fused patches that extended into downstream visual areas. Moreover, both anisometropic and strabismic participants showed stronger OD responses in V1, as well as in downstream visual areas V2-V4. Although this increase was most pronounced in V1, the correlation between the OD response level and the interocular visual acuity difference (measured behaviorally) was stronger in higher-level visual areas (V2-V4). Beyond these common effects, and despite similar densities of amblyopia between the anisometropic and strabismic participants, we found a greater increase in the size of V1 portion that responded preferentially to fellow eye stimulation in anisometropic compared to strabismic individuals. We also found a greater difference between the amplitudes of the response to binocular stimulation, in those regions that responded preferentially to the fellow vs. amblyopic eye, in anisometropic compared to strabismic subjects. In contrast, strabismic subjects demonstrated increased correlation between the OD responses evoked within V1 superficial and deep cortical depths, whereas anisometropic subjects did not. These results provide some of the first direct functional evidence for distinct impacts of strabismus and anisometropia on the mesoscale functional organization of the human visual system, thus extending what was inferred previously about amblyopia from animal models.

4.
Ophthalmic Physiol Opt ; 43(6): 1379-1390, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37589437

RESUMO

Colour vision deficiencies (CVDs) indicate potential genetic variations and can be important biomarkers of acquired impairment in many neuro-ophthalmic diseases. However, CVDs are typically measured with tests which possess high sensitivity for detecting the presence of a CVD but do not quantify its type or severity. In this study, we introduce Foraging Interactive D-prime (FInD), a novel computer-based, generalisable, rapid, self-administered vision assessment tool and apply it to colour vision testing. This signal detection theory-based adaptive paradigm computed test stimulus intensity from d-prime analysis. Stimuli were chromatic Gaussian blobs in dynamic luminance noise, and participants clicked on cells that contained chromatic blobs (detection) or blob pairs of differing colours (discrimination). Sensitivity and repeatability of FInD colour tasks were compared against the Hardy-Rand-Rittler and the Farnsworth-Munsell 100 hue tests in 19 colour-normal and 18 inherited colour-atypical, age-matched observers. Rayleigh colour match was also completed. Detection and discrimination thresholds were higher for atypical than for typical observers, with selective threshold elevations corresponding to unique CVD types. Classifications of CVD type and severity via unsupervised machine learning confirmed functional subtypes. FInD tasks reliably detect inherited CVDs, and may serve as valuable tools in basic and clinical colour vision science.


Assuntos
Doenças Cardiovasculares , Defeitos da Visão Cromática , Visão de Cores , Humanos , Defeitos da Visão Cromática/diagnóstico , Testes Visuais , Aprendizado de Máquina , Percepção de Cores
5.
medRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37398496

RESUMO

Color vision deficiencies (CVDs) indicate potential genetic variations and can be important biomarkers of acquired impairment in many neuro-ophthalmic diseases. However, CVDs are typically measured with insensitive or inefficient tools that are designed to classify dichromacy subtypes rather than track changes in sensitivity. We introduce FInD (Foraging Interactive D-prime), a novel computer-based, generalizable, rapid, self-administered vision assessment tool and applied it to color vision testing. This signal detection theory-based adaptive paradigm computes test stimulus intensity from d-prime analysis. Stimuli were chromatic gaussian blobs in dynamic luminance noise, and participants clicked on cells that contain chromatic blobs (detection) or blob pairs of differing colors (discrimination). Sensitivity and repeatability of FInD Color tasks were compared against HRR, FM100 hue tests in 19 color-normal and 18 color-atypical, age-matched observers. Rayleigh color match was completed as well. Detection and Discrimination thresholds were higher for atypical observers than for typical observers, with selective threshold elevations corresponding to unique CVD types. Classifications of CVD type and severity via unsupervised machine learning confirmed functional subtypes. FInD tasks reliably detect CVD and may serve as valuable tools in basic and clinical color vision science.

6.
Dev Med Child Neurol ; 65(10): 1379-1386, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37012700

RESUMO

AIM: Using a visual psychophysical paradigm, we sought to assess motion and form coherence thresholds as indices of dorsal and ventral visual stream processing respectively, in individuals with cerebral visual impairment (CVI). We also explored potential associations between psychophysical assessments and brain lesion severity in CVI. METHOD: Twenty individuals previously diagnosed with CVI (mean age = 17 years 11 months [SD 5 years 10 months]; mean Verbal IQ = 86.42 [SD 35.85]) and 30 individuals with neurotypical development (mean age = 20 years 1 month [SD 3 years 8 months]; mean Verbal IQ = 110.05 [SD 19.34]) participated in the study. In this two-group comparison, cross-sectional study design, global motion, and form pattern coherence thresholds were assessed using a computerized, generalizable, self-administrable, and response-adaptive psychophysical paradigm called FInD (Foraging Interactive D-prime). RESULTS: Consistent with dorsal stream dysfunction, mean global motion (but not form) coherence thresholds were significantly higher in individuals with CVI compared to controls. No statistically significant association was found between coherence thresholds and lesion severity. INTERPRETATION: These results suggest that the objective assessment of motion and form coherence threshold sensitivities using this psychophysical paradigm may be useful in helping to characterize perceptual deficits and the complex clinical profile of CVI. WHAT THIS PAPER ADDS: In participants with cerebral visual impairment (CVI), motion (but not form) coherence thresholds were significantly higher compared to controls. These psychophysical results support the notion of dorsal stream dysfunction in CVI.


Assuntos
Encefalopatias , Percepção de Movimento , Humanos , Adolescente , Adulto Jovem , Adulto , Estudos Transversais , Transtornos da Visão/etiologia , Movimentos Oculares
7.
bioRxiv ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36909639

RESUMO

This proof-of-concept study introduces Angular Indication Measurement and applies it to VA (AIM-VA). First, we compared the ability of AIM-VA and ETDRS to detect defocus and astigmatic blur in 22 normally-sighted adults. Spherical and cylindrical lenses (±0.00D, +0.25D, +0.50D, +0.75D, +1.00D, +2.00D and +0.50D, +1.00D, +2.00D each at 0°, 90°, 135°, respectively) in the dominant eye induced blur. Second, we compared repeatability over two tests of AIM-VA and ETDRS. A 2-way-ANOVA showed a main effect for defocus-blur and test with no interaction. A 3-way-ANOVA for the astigmatism experiment revealed main effects for test type, blur, and direction and with no interactions. Planned multiple comparisons showed AIM had greater astigmatic-induced VA loss than ETDRS. Bland-Altman plots showed small bias and no systematic learning effect for either test type and improved repeatability with >2 adaptive steps for AIM-VA. AIM-VA's ability to detect defocus was comparable with that of an ETDRS letter chart and showed greater sensitivity to astigmatic blur, and AIM-VA's repeatability is comparable with ETDRS when using 2 or more adaptive steps. AIM's self-administered orientation judgment approach is generalizable to interrogate other visual functions, e.g., contrast, color, motion, stereo-vision.

8.
Conscious Cogn ; 107: 103437, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450218

RESUMO

Perceptual multistability, e.g. Binocular Rivalry, has been intensively used as a tool to study visual consciousness. Current methods to assess multistability do not capture all potentially occurring perceptual states, provide no estimate of introspection, and lack continuous, high-temporal resolution to resolve perceptual changes between states and within mixed perceptual states. We introduce InFoRM (Indicate-Follow-Replay-Me), a four-phase method that (1) trains a participant to self-generate estimates of perceptual introspection-maps that are (2) validated during a physical mimic task, (3) gathers perceptual multistability data, and (4) confirms their validity during a physical replay. 28 condition-blinded adults performed InFoRM while experiencing binocular rivalry evoked with orthogonal sinusoidal gratings. A 60 Hz joystick (3600 data samples/minute) was used to indicate continuously changes across six perceptual states within each 1 min trial. A polarized monitor system was used to present the stimuli dichoptically. Three contrast conditions were investigated: low vs low, high vs high, and low vs high. InFoRM replicates standard outcome measures, i.e. alternation rate, mean and relative proportions of perception, and distribution of exclusive percepts that are well fitted with gamma functions. Furthermore, InFoRM generates novel outcomes that deliver new insights in visual cognition via estimates of introspection maps, in ocular dominance via perceptual-state-specific dominance scores, in transitory dynamics between and within perceptual states, via techniques adopted from eye-tracking, and in rivalry-zone-size estimates utilizing InFoRM's ability to simulate piecemeal perception. The replay phase (physical replay of perceptual rivalry) confirmed good overall agreement (73% ±5 standard deviation). InFoRM can be applied to other multistable paradigms and can be used to study visual consciousness in typical and neuro-atypical populations.


Assuntos
Estado de Consciência , Visão Binocular , Adulto , Humanos , Visão Binocular/fisiologia , Estimulação Luminosa , Percepção Visual/fisiologia
9.
Sci Rep ; 12(1): 4376, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288609

RESUMO

Sensory differences between autism and neuro-typical populations are well-documented and have often been explained by either weak-central-coherence or excitation/inhibition-imbalance cortical theories. We tested these theories with perceptual multi-stability paradigms in which dissimilar images presented to each eye generate dynamic cyclopean percepts based on ongoing cortical grouping and suppression processes. We studied perceptual multi-stability with Interocular Grouping (IOG), which requires the simultaneous integration and suppression of image fragments from both eyes, and Conventional Binocular Rivalry (CBR), which only requires global suppression of either eye, in 17 autistic adults and 18 neurotypical participants. We used a Hidden-Markov-Model as tool to analyze the multistable dynamics of these processes. Overall, the dynamics of multi-stable perception were slower (i.e. there were longer durations and fewer transitions among perceptual states) in the autistic group compared to the neurotypical group for both IOG and CBR. The weighted Markovian transition distributions revealed key differences between both groups and paradigms. The results indicate overall lower levels of suppression and decreased levels of grouping in autistic than neurotypical participants, consistent with elements of excitation/inhibition imbalance and weak-central-coherence theories.


Assuntos
Transtorno Autístico , Adulto , Estado de Consciência , Humanos , Estimulação Luminosa/métodos , Visão Binocular/fisiologia , Percepção Visual/fisiologia
10.
Sci Rep ; 10(1): 13409, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770074

RESUMO

Interocular grouping (IOG) is a binocular visual function that can arise during multi-stable perception. IOG perception was initiated using split-grating stimuli constructed from luminance (L), luminance-modulated noise (LM) and contrast-modulated noise (CM). In Experiment 1, three different visibility levels were used for L and LM (or first-order) stimuli, and compared to fixed-visibility CM (or second-order) stimuli. Eight binocularly normal participants indicated whether they perceived full horizontal or vertical gratings, superimposition, or other (piecemeal and eye-of-origin) percepts. CM stimuli rarely generated full IOG, but predominantly generated superimposition. In Experiment 2, Levelt's modified laws were tested for IOG in nine participants. Split-gratings presented to each eye contained different visibility LM gratings, or LM and CM gratings. The results for the LM-vs-LM conditions mostly followed the predictions of Levelt's modified laws, whereas the results for the LM-vs-CM conditions did not. Counterintuitively, when high-visibility LM and low-visibility CM split-gratings were used, high-visibility LM components did not predominate IOG perception. Our findings suggest that higher proportions of superimposition during CM-vs-CM viewing are due to binocular combination, rather than mutual inhibition. It implies that IOG percepts are more likely to be mediated at an earlier monocular, rather than a binocular stage. Our previously proposed conceptual framework for conventional binocular rivalry, which includes asymmetric feedback, visual saliency, or a combination of both (Skerswetat et al. Sci Rep 8:14432, 2018), might also account for IOG. We speculate that opponency neurons might mediate coherent percepts when dissimilar information separately enters the eyes.


Assuntos
Estimulação Luminosa/métodos , Visão Monocular/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Conscientização/fisiologia , Feminino , Humanos , Masculino , Visão Binocular/fisiologia
11.
Sci Rep ; 8(1): 14432, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258060

RESUMO

Incompatible patterns viewed by each of the two eyes can provoke binocular rivalry, a competition of perception. Levelt's first law predicts that a highly visible stimulus will predominate over a less visible stimulus during binocular rivalry. In a behavioural study, we made a counterintuitive observation: high visibility patterns do not always predominate over low visibility patterns. Our results show that none of Levelt's binocular rivalry laws hold when luminance-modulated (LM) patterns compete with contrast-modulated (CM) patterns. We discuss visual saliency, asymmetric feedback, and a combination of both as potential mechanisms to explain the CM versus LM findings. Competing orthogonal LM stimuli do follow Levelt's laws, whereas only the first two laws hold for competing CM stimuli. The current results provide strong psychophysical evidence for the existence of separate processing stages for LM and CM stimuli.


Assuntos
Dominância Ocular/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa
12.
Vision Res ; 142: 40-51, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102622

RESUMO

Luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings were presented with interocularly correlated, uncorrelated and anti-correlated binary noise to investigate their contributions to mixed percepts, specifically piecemeal and superimposition, during binocular rivalry. Stimuli were sine-wave gratings of 2 c/deg presented within 2 deg circular apertures. The LM stimulus contrast was 0.1 and the CM stimulus modulation depth was 1.0, equating to approximately 5 and 7 times detection threshold, respectively. Twelve 45 s trials, per noise configuration, were carried out. Fifteen participants with normal vision indicated via button presses whether an exclusive, piecemeal or superimposed percept was seen. For all noise conditions LM stimuli generated more exclusive visibility, and lower proportions of superimposition. CM stimuli led to greater proportions and longer periods of superimposition. For both stimulus types, correlated interocular noise generated more superimposition than did anti- or uncorrelated interocular noise. No significant effect of stimulus type (LM vs CM) or noise configuration (correlated, uncorrelated, anti-correlated) on piecemeal perception was found. Exclusive visibility was greater in proportion, and perceptual changes more numerous, during binocular rivalry for CM stimuli when interocular noise was not correlated. This suggests that mutual inhibition, initiated by non-correlated noise CM gratings, occurs between neurons processing luminance noise (first-order component), as well as those processing gratings (second-order component). Therefore, first- and second-order components can contribute to overall binocular rivalry responses. We suggest the addition of a new well to the current energy landscape model for binocular rivalry that takes superimposition into account.


Assuntos
Sensibilidades de Contraste/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Adulto , Dominância Ocular/fisiologia , Feminino , Humanos , Estimulação Luminosa/métodos , Adulto Jovem
13.
Vision Res ; 121: 10-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26827700

RESUMO

Binocular rivalry properties for contrast-modulated (CM) gratings were examined to gain insight into their locus of processing. Two orthogonally orientated gratings were presented, one to each eye. Perceptual change rates, proportions of exclusivity and mixed percepts, and mean durations were calculated. Stimuli were noiseless luminance-defined (L), luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings with sizes of 1, 2 and 4deg and spatial frequencies of 4, 2 and 1c/deg, respectively. For the LM and CM gratings, binary noise was fully correlated between eyes. Maximum producible modulations were used (1.0 for CM, 0.78 for LM and 0.98 for L stimuli). In a control experiment, contrasts of LM gratings were reduced until the multiples over detection threshold were similar to those of CM stimuli. Trial durations of 120s were analyzed. Exclusive visibility decreased with increasing stimulus size regardless of the stimulus type. Even with visibilities at similar multiples above detection threshold, significantly lower proportions of exclusive percepts and perceptual changes were found for CM, compared to LM gratings. The results obtained with dichoptically presented orthogonal CM gratings are significantly different from those obtained for orthogonal gratings presented to one eye. CM stimuli therefore do engage in binocular rivalry but with different characteristics to those found for LM stimuli. These results suggest that CM stimuli are processed by a mechanism that promotes binocular combination rather than rivalry, and therefore may involve cells in a higher visual area than those that initially process LM information.


Assuntos
Sensibilidades de Contraste/fisiologia , Retina/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...