Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Physiol Perform ; : 1-7, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917986

RESUMO

INTRODUCTION: In distance running, pacing is characterized by changes in speed, leading to runners dropping off the leader's pace until a few remain to contest victory with a final sprint. Pacing behavior has been well studied over the last 30 years, but much remains unknown. It might be related to finishing position, finishing time, and dependent on critical speed (CS), a surrogate of physiologic capacity. We hypothesized a relationship between CS and the distance at which runners "fell behind" and "let go" from the leader or were "outsprinted" as contributors to performance. METHODS: 100-m split times were obtained for athletes in the men's 10,000-m at the 2008 Olympics (N = 35). Split times were individually compared with the winner at the point of "falling behind" (successive split times progressively slower than the winner), "letting go" (large increase in time for distance compared with winner), or "outsprinted" (falling behind despite active acceleration) despite being with the leader with 400 m remaining. RESULTS: Race times ranged between 26:55 and 29:23 (world record = 26:17). There were 3 groups who fell behind at ∼1000 (n = 11), ∼6000 (n = 16), and ∼9000 m (n = 2); let go at ∼4000 (n = 10), ∼7000 (n = 14), and ∼9500 m (n = 5); or were outkicked (n = 6). There was a moderate correlation between CS and finishing position (r = .82), individual mean pace (r = .79), "fell behind" distance (r = .77), and "let go" distance (r = .79). D' balance was correlated with performance in the last 400 m (r = .87). CONCLUSIONS: Athletes displayed distinct patterns of falling behind and letting go. CS serves as a moderate predictor of performance and final placing. Final placing during the sprint is related to preservation of D' balance.

2.
Int J Sports Physiol Perform ; 19(1): 62-70, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922897

RESUMO

PURPOSE: This study determined the evolution of performance and pacing for each winner of the men's Olympic 1500-m running track final from 1924 to 2020. METHODS: Data were obtained from publicly available sources. When official splits were unavailable, times from sources such as YouTube were included and interpolated from video records. Final times, lap splits, and position in the peloton were included. The data are presented relative to 0 to 400 m, 400 to 800 m, 800 to 1200 m, and 1200 to 1500 m. Critical speed and D' were calculated using athletes' season's best times. RESULTS: Performance improved ∼25 seconds from 1924 to 2020, with most improvement (∼19 s) occurring in the first 10 finals. However, only 2 performances were world records, and only one runner won the event twice. Pacing evolved from a fast start-slow middle-fast finish pattern (reverse J-shaped) to a slower start with steady acceleration in the second half (J-shaped). The coefficient of variation for lap speeds ranged from 1.4% to 15.3%, consistent with a highly tactical pacing pattern. With few exceptions, the eventual winners were near the front throughout, although rarely in the leading position. There is evidence of a general increase in both critical speed and D' that parallels performance. CONCLUSIONS: An evolution in the pacing pattern occurred across several "eras" in the history of Olympic 1500-m racing, consistent with better trained athletes and improved technology. There has been a consistent tactical approach of following opponents until the latter stages, and athletes should develop tactical flexibility, related to their critical speed and D', in planning prerace strategy.


Assuntos
Desempenho Atlético , Corrida , Masculino , Humanos , Comportamento Competitivo , Atletas
3.
Med Sci Sports Exerc ; 55(2): 235-244, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094337

RESUMO

PURPOSE: This study aimed 1) to examine the accuracy with which W' reconstitution (W' REC ) is estimated by the W' balance (W' BAL ) models after a 3-min all-out cycling test (3MT), 2) to determine the effects of a 3MT on the power-duration relationship, and 3) to assess whether accounting for changes in the power-duration relationship during exercise improved estimates of W' REC . METHODS: The power-duration relationship and the actual and estimated W' REC were determined for 12 data sets extracted from our laboratory database where participants had completed two 3MT separated by 1-min recovery (i.e., control [C-3MT] and fatigued [F-3MT]). RESULTS: Actual W' REC (6.3 ± 1.4 kJ) was significantly overestimated by the W' BAL·ODE (9.8 ± 1.3 kJ; P < 0.001) and the W' BAL·MORTON (16.9 ± 2.6 kJ; P < 0.001) models but was not significantly different to the estimate provided by the W' BAL·INT (7.5 ± 1.5 kJ; P > 0.05) model. End power (EP) was 7% lower in the F-3MT (263 ± 40 W) compared with the C-3MT (282 ± 44 W; P < 0.001), and work done above EP (WEP) was 61% lower in the F-3MT (6.3 ± 1.4 kJ) compared with the C-3MT (16.9 ± 3.2 kJ). The size of the error in the estimated W' REC was correlated with the reduction in WEP for the W' BAL·INT and W' BAL·ODE models (both r > -0.74, P < 0.01) but not the W' BAL·MORTON model ( r = -0.18, P > 0.05). Accounting for the changes in the power-duration relationship improved the accuracy of the W' BAL·ODE and W' BAL·MORTON , but they remained significantly different to actual W' REC . CONCLUSIONS: These findings demonstrate that the power-duration relationship is altered after a 3MT, and accounting for these changes improves the accuracy of the W' BAL·ODE and the W' BAL·MORTON , but not W' BAL·INT models. These results have important implications for the design and use of mathematical models describing the energetics of exercise performance.


Assuntos
Teste de Esforço , Resistência Física , Humanos , Teste de Esforço/métodos , Exercício Físico , Fadiga , Ciclismo , Consumo de Oxigênio
4.
Eur J Sport Sci ; 23(7): 1259-1268, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36310098

RESUMO

The present study aims to determine the utility of integrating balance model (W´BAL-INT) in designing interval training programmes as assessed by improvements in power output, critical power (CP), and W prime (W´) defined as the finite work capacity above CP. Fourteen male cyclists (age = 42 ± 7 yr, body mass = 69.6 ± 6.5 kg, height = 175 ± 5 cm, CP = 302 ± 32 W, relative CP = 4.35 ± 0.66 W·kg-1) were randomized into two training groups: Short-Medium-Long intervals (SML-INT; n = 7) or Long intervals (L-INT, n = 7) [training sessions separated by 72 h], along with 3-4 sessions of moderate intensity training per week, for 4 weeks. All sessions were designed to result in the complete depletion of the W´ as gauged by the W´BAL-INT. CP and W´ were assessed using the specified efforts (i.e. 12, 7 and 3 min) and calculated with the 2-parameter CP linear model. Training loads between the groups were compared using different metrics. CP improved in both the SML-INT and L-INT groups by 5 ± 4% and 6 ± 5% (p < 0.001) respectively, without significant changes in W´. Mean maximal power over 3, 7 and 12 min increased significantly in the SML-INT group by 5%, 4% and 9%, (p < 0.05) without significant changes in the L-INT group. There were no differences between groups in training zone distribution or training load using BikeScore and relative intensity, but there was significantly (p < 0.05) higher TRIMPS for the Long-INT group. Therefore, W´BAL model may prove to be a useful tool for coaches to construct SML-INT training programmes.HighlightsCP significantly improved with both training models during the present intervention and in power output in some of the time to exhaustion (TTE) trials, despite a difference in training load between the groups as assessed by TRIMPS.We recommend designing endurance training sessions based on the use of the W´BAL-INT model.The structured interval model can be an easy and standardized way for cyclists and coaches to monitor their potential for flat and mid-mountain stages.


Assuntos
Treino Aeróbico , Consumo de Oxigênio , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Ciclismo , Modelos Lineares , Resistência Física
5.
Int J Sports Physiol Perform ; 16(11): 1561-1572, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34686611

RESUMO

Since its publication in 2012, the W' balance model has become an important tool in the scientific armamentarium for understanding and predicting human physiology and performance during high-intensity intermittent exercise. Indeed, publications featuring the model are accumulating, and it has been adapted for popular use both in desktop computer software and on wrist-worn devices. Despite the model's intuitive appeal, it has achieved mixed results thus far, in part due to a lack of clarity in its basis and calculation. Purpose: This review examines the theoretical basis, assumptions, calculation methods, and the strengths and limitations of the integral and differential forms of the W' balance model. In particular, the authors emphasize that the formulations are based on distinct assumptions about the depletion and reconstitution of W' during intermittent exercise; understanding the distinctions between the 2 forms will enable practitioners to correctly implement the models and interpret their results. The authors then discuss foundational issues affecting the validity and utility of the model, followed by evaluating potential modifications and suggesting avenues for further research. Conclusions: The W' balance model has served as a valuable conceptual and computational tool. Improved versions may better predict performance and further advance the physiology of high-intensity intermittent exercise.


Assuntos
Treinamento Intervalado de Alta Intensidade , Consumo de Oxigênio , Exercício Físico/fisiologia , Teste de Esforço/métodos , Humanos , Consumo de Oxigênio/fisiologia
6.
Front Physiol ; 8: 180, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386237

RESUMO

Purpose: Develop a prediction equation for critical power (CP) and work above CP (W') in hypoxia for use in the work-balance ([Formula: see text]) model. Methods: Nine trained male cyclists completed cycling time trials (TT; 12, 7, and 3 min) to determine CP and W' at five altitudes (250, 1,250, 2,250, 3,250, and 4,250 m). Least squares regression was used to predict CP and W' at altitude. A high-intensity intermittent test (HIIT) was performed at 250 and 2,250 m. Actual and predicted CP and W' were used to compute W' during HIIT using differential ([Formula: see text]) and integral ([Formula: see text]) forms of the [Formula: see text] model. Results: CP decreased at altitude (P < 0.001) as described by 3rd order polynomial function (R2 = 0.99). W' decreased at 4,250 m only (P < 0.001). A double-linear function characterized the effect of altitude on W' (R2 = 0.99). There was no significant effect of parameter input (actual vs. predicted CP and W') on modelled [Formula: see text] at 2,250 m (P = 0.24). [Formula: see text] returned higher values than [Formula: see text] throughout HIIT (P < 0.001). During HIIT, [Formula: see text] was not different to 0 kJ at completion, at 250 m (0.7 ± 2.0 kJ; P = 0.33) and 2,250 m (-1.3 ± 3.5 kJ; P = 0.30). However, [Formula: see text] was lower than 0 kJ at 250 m (-0.9 ± 1.3 kJ; P = 0.058) and 2,250 m (-2.8 ± 2.8 kJ; P = 0.02). Conclusion: The altitude prediction equations for CP and W' developed in this study are suitable for use with the [Formula: see text] model in acute hypoxia. This enables the application of [Formula: see text] modelling to training prescription and competition analysis at altitude.

7.
Med Sci Sports Exerc ; 48(3): 527-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26460632

RESUMO

PURPOSE: This study investigated the efficacy of an intermittent critical power (CP) model, termed the "work-balance" (W'BAL) model, during high-intensity exercise in hypoxia (HYPO). METHODS: Eleven trained male cyclists (mean ± SD age, 27 ± 6.6 yr; V˙O2peak, 4.79 ± 0.56 L·min(-1)) completed a maximal ramp test and a 3-min "all-out" test to determine CP and work performed above CP (W'). On another day, an intermittent exercise test to task failure was performed. All procedures were performed in normoxia (NORM) and HYPO (FiO2 ≈ 0.155) in a single-blind, randomized, and counter-balanced experimental design. The W'BAL model was used to calculate the minimum W' (W'BALmin) achieved during the intermittent test. The W'BALmin in HYPO was also calculated using CP + W' derived in NORM (N + H). RESULTS: In HYPO, there was an 18% decrease in V˙O2peak (4.79 ± 0.56 vs 3.93 ± 0.47 L·min(-1); P < 0.001) and a 9% decrease in CP (347 ± 45 vs 316 ± 46 W; P < 0.001). No significant change for W' occurred (13.4 ± 3.9 vs 13.7 ± 4.9 kJ; P = 0.69; NORM vs HYPO). The change in V˙O2peak was significantly correlated with the change in CP (r = 0.72; P = 0.01). There was no difference between NORM and HYPO for W'BALmin (1.1 ± 0.9 kJ vs 1.2 ± 0.6 kJ). The N + H analysis grossly overestimated W'BALmin (7.8 ± 3.4 kJ) compared with HYPO (P < 0.001). CONCLUSION: The W'BAL model produced similar results in HYPO and NORM, but only when model parameters were determined under the same environmental conditions as the performance task. Application of the W'BAL model at altitude requires a modification of the model or that CP and W' are measured at altitude.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Hipóxia , Consumo de Oxigênio , Adulto , Altitude , Teste de Esforço , Fadiga , Humanos , Masculino , Modelos Teóricos , Método Simples-Cego , Adulto Jovem
8.
Eur J Appl Physiol ; 115(4): 703-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25425258

RESUMO

PURPOSE: The primary purpose of this investigation was to compare the recovery of the W' to the recovery of intramuscular substrates and metabolites using (31)P- and (1)H-magnetic resonance spectroscopy. METHODS: Ten healthy recreationally trained subjects were tested to determine critical power (CP) and W' for single-leg-extensor exercise. They subsequently exercised in the bore of a 1.5-T MRI scanner at a supra-CP work rate. Following exhaustion, the subjects rested in place for 1, 2, 5 or 7 min, and then repeated the effort. The temporal course of W' recovery was estimated, which was then compared to the recovery of creatine phosphate [PCr], pH, carnosine content, and to the output of a novel derivation of the W' BAL model. RESULTS: W' recovery closely correlated with the predictions of the novel model (r = 0.97, p = 0.03). [PCr] recovered faster [Formula: see text] than W' [Formula: see text] The W' available for the second exercise bout was directly correlated with the difference between [PCr] at the beginning of the work bout and [PCr] at exhaustion (r = 0.99, p = 0.005). Nonlinear regression revealed an inverse curvilinear relationship between carnosine concentration and the W' t 1/2 (r (2) = 0.55). CONCLUSION: The kinetics of W' recovery in single-leg-extensor exercise is comparable to that observed in whole-body exercise, suggesting a conserved mechanism. The extent to which the recovery of the W' can be directly attributed to the recovery of [PCr] is unclear. The relationship of the W' to muscle carnosine content suggests novel future avenues of investigation.


Assuntos
Músculo Esquelético/fisiologia , Resistência Física , Adulto , Carnosina/metabolismo , Feminino , Humanos , Masculino , Modelos Biológicos , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo
9.
Med Sci Sports Exerc ; 46(7): 1433-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24492634

RESUMO

PURPOSE: We recently presented an integrating model of the curvature constant of the hyperbolic power-time relationship (W') that permits the calculation of the W' balance (W'BAL) remaining at any time during intermittent exercise. Although a relationship between recovery power and the rate of W' recovery was demonstrated, the effect of the length of work or recovery intervals remains unclear. METHODS: After determining VO2max, critical power, and W', 11 subjects completed six separate exercise tests on a cycle ergometer on different days, and in random order. Tests consisted of a period of intermittent severe-intensity exercise until the subject depleted approximately 50% of their predicted W'BAL, followed by a constant work rate (CWR) exercise bout until exhaustion. Work rates were kept constant between trials; however, either work or recovery durations during intermittent exercise were varied. The actual W' measured during the CWR (W'ACT) was compared with the amount of W' predicted to be available by the W'BAL model. RESULTS: Although some differences between W'BAL and W'ACT were noted, these amounted to only -1.6 ± 1.1 kJ when averaged across all conditions. The W'ACT was linearly correlated with the difference between VO2 at the start of CWR and VO2max (r = 0.79, P < 0.01). CONCLUSIONS: The W'BAL model provided a generally robust prediction of CWR W'. There may exist a physiological optimum formulation of work and recovery intervals such that baseline VO2 can be minimized, leading to an enhancement of subsequent exercise tolerance. These results may have important implications for athletic training and racing.


Assuntos
Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Modelos Biológicos , Trabalho/fisiologia , Adulto , Teste de Esforço/métodos , Feminino , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Fatores de Tempo
10.
Int J Sports Physiol Perform ; 9(6): 900-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24509723

RESUMO

Recently, an adaptation to the critical-power (CP) model was published, which permits the calculation of the balance of the work capacity available above the CP remaining (W'bal) at any time during intermittent exercise. As the model is now in use in both amateur and elite sport, the purpose of this investigation was to assess the validity of the W'bal model in the field. Data were collected from the bicycle power meters of 8 trained triathletes. W'bal was calculated and compared between files where subjects reported becoming prematurely exhausted during training or competition and files where the athletes successfully completed a difficult assigned task or race without becoming exhausted. Calculated W'bal was significantly different between the 2 conditions (P < .0001). The mean W'bal at exhaustion was 0.5 ± 1.3 kJ (95% CI = 0-0.9 kJ), whereas the minimum W'bal in the nonexhausted condition was 3.6 ± 2.0 kJ (95% CI = 2.1-4.0 kJ). Receiver-operator-characteristic (ROC) curve analysis indicated that the W'bal model is useful for identifying the point at which athletes are in danger of becoming exhausted (area under the ROC curve = .914, SE .05, 95% CI .82-1.0, P < .0001). The W'bal model may therefore represent a useful new development in assessing athlete fatigue state during training and racing.


Assuntos
Ciclismo/fisiologia , Fadiga/fisiopatologia , Modelos Estatísticos , Adulto , Feminino , Humanos , Masculino , Educação Física e Treinamento , Resistência Física/fisiologia , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos
11.
Am J Physiol Regul Integr Comp Physiol ; 305(9): R1085-92, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24068048

RESUMO

We investigated the responses of intramuscular phosphate-linked metabolites and pH (as assessed by (31)P-MRS) during intermittent high-intensity exercise protocols performed with different recovery-interval durations. Following estimation of the parameters of the power-duration relationship, i.e., the critical power (CP) and curvature constant (W'), for severe-intensity constant-power exercise, nine male subjects completed three intermittent exercise protocols to exhaustion where periods of high-intensity constant-power exercise (60 s) were separated by different durations of passive recovery (18 s, 30 s and 48 s). The tolerable duration of exercise was 304 ± 68 s, 516 ± 142 s, and 847 ± 240 s for the 18-s, 30-s, and 48-s recovery protocols, respectively (P < 0.05). The work done >CP (W>CP) was significantly greater for all intermittent protocols compared with the subjects' W', and this difference became progressively greater as recovery-interval duration was increased. The restoration of intramuscular phosphocreatine concentration during recovery was greatest, intermediate, and least for 48 s, 30 s, and 18 s of recovery, respectively (P < 0.05). The W>CP in excess of W' increased with greater durations of recovery, and this was correlated with the mean magnitude of muscle phosphocreatine reconstitution between work intervals (r = 0.61; P < 0.01). The results of this study show that during intermittent high-intensity exercise, recovery intervals allow intramuscular homeostasis to be restored, with the degree of restoration being related to the duration of the recovery interval. Consequently, and consistent with the intermittent CP model, the ability to perform W>CP during intermittent high-intensity exercise and, therefore, exercise tolerance, increases when recovery-interval duration is extended.


Assuntos
Metabolismo Energético , Exercício Físico , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Contração Muscular , Força Muscular , Músculo Esquelético/metabolismo , Adulto , Análise de Variância , Biomarcadores/metabolismo , Inglaterra , Tolerância ao Exercício , Humanos , Concentração de Íons de Hidrogênio , Masculino , Fadiga Muscular , Fosfocreatina/metabolismo , Recuperação de Função Fisiológica , Fatores de Tempo , Adulto Jovem
12.
Int J Sports Physiol Perform ; 8(5): 475-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24026759

RESUMO

Anaerobic capacity/anaerobically attributable power is an important parameter for athletic performance, not only for short high-intensity activities but also for breakaway efforts and end spurts during endurance events. Unlike aerobic capacity, anaerobic capacity cannot be easily quantified. The 3 most commonly used methodologies to quantify anaerobic capacity are the maximal accumulated oxygen deficit method, the critical power concept, and the gross efficiency method. This review describes these methods, evaluates if they result in similar estimates of anaerobic capacity, and highlights how anaerobic capacity is used during sporting activities. All 3 methods have their own strengths and weaknesses and result in more or less similar estimates of anaerobic capacity but cannot be used interchangeably. The method of choice depends on the research question or practical goal.


Assuntos
Limiar Anaeróbio/fisiologia , Desempenho Atlético/fisiologia , Metabolismo Energético , Esportes/fisiologia , Humanos , Consumo de Oxigênio
13.
Adv Physiol Educ ; 37(2): 134-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23728131

RESUMO

A number of professions rely on exercise prescription to improve health or athletic performance, including coaching, fitness/personal training, rehabilitation, and exercise physiology. It is therefore advisable that the professionals involved learn the various tools available for designing effective training programs. Mathematical modeling of athletic training and performance, which we henceforth call "performance modeling," is one such tool. Two models, the critical power (CP) model and the Banister impulse-response (IR) model, offer complementary information. The CP model describes the relationship between work rates and the durations for which an individual can sustain them during constant-work-rate or intermittent exercise. The IR model describes the dynamics by which an individual's performance capacity changes over time as a function of training. Both models elegantly abstract the underlying physiology, and both can accurately fit performance data, such that educating exercise practitioners in the science of performance modeling offers both pedagogical and practical benefits. In addition, performance modeling offers an avenue for introducing mathematical modeling skills to exercise physiology researchers. A principal limitation to the adoption of performance modeling is a lack of education. The goal of this report is therefore to encourage educators of exercise physiology practitioners and researchers to incorporate the science of performance modeling in their curricula and to serve as a resource to support this effort. The resources include a comprehensive review of the concepts associated with the development and use of the models, software to enable hands-on computer exercises, and strategies for teaching the models to different audiences.


Assuntos
Desempenho Atlético , Exercício Físico/fisiologia , Modelos Biológicos , Fisiologia/educação , Ensino/métodos , Adaptação Fisiológica , Instrução por Computador , Currículo , Terapia por Exercício , Tolerância ao Exercício , Humanos , Software , Fatores de Tempo
14.
J Appl Physiol (1985) ; 115(3): 325-36, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23640589

RESUMO

Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration ([NO2(-)]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO3(-), respectively) or no supplement to establish the effects of BR on resting plasma [NO3(-)] and [NO2(-)] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO3(-)-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO2(-)] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% (P = 0.06) and 3.0% (P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO2(-)] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO3(-)-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO3(-). These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.


Assuntos
Beta vulgaris/fisiologia , Suplementos Nutricionais , Exercício Físico/fisiologia , Adulto , Algoritmos , Análise de Variância , Bebidas , Pressão Sanguínea/fisiologia , Índice de Massa Corporal , Dióxido de Carbono/sangue , Relação Dose-Resposta a Droga , Feminino , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Masculino , Nitratos/sangue , Nitritos/sangue , Oxigênio/sangue , Consumo de Oxigênio/fisiologia , Adulto Jovem
15.
J Appl Physiol (1985) ; 115(2): 243-50, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23640601

RESUMO

We tested the hypothesis that muscle high-energy phosphate compounds and metabolites related to the fatigue process would be recovered after exhaustion during recovery exercise performed below but not above critical power (CP) and that these changes would influence the capacity to continue exercise. Eight male subjects completed single-leg, knee-extension exercise to exhaustion (for ∼180 s) on three occasions, followed by a work-rate reduction to severe-intensity exercise, heavy-intensity exercise (CP conditions (at least 10 min and 39 ± 31 s, respectively; P < 0.05). During passive recovery and CP recovery exercise, neither muscle [PCr] nor pH recovered, reaching ∼37% of the initial baseline and 6.6 ± 0.2, respectively. These results indicate that the muscle metabolic dynamics in recovery from exhaustive >CP differ according to whether the recovery exercise is performed below or above the CP. These findings confirm the importance of the CP as an intramuscular metabolic threshold that dictates the accumulation of fatigue-related metabolites and the capacity to tolerate high-intensity exercise.


Assuntos
Tolerância ao Exercício/fisiologia , Fadiga/fisiopatologia , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Adulto , Metabolismo Energético/fisiologia , Teste de Esforço/métodos , Fadiga/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Adulto Jovem
16.
Med Sci Sports Exerc ; 44(8): 1526-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22382171

RESUMO

PURPOSE: The critical power (CP) model includes two constants: the CP and the W' [P = (W' / t) + CP]. The W' is the finite work capacity available above CP. Power output above CP results in depletion of the W' complete depletion of the W' results in exhaustion. Monitoring the W' may be valuable to athletes during training and competition. Our purpose was to develop a function describing the dynamic state of the W' during intermittent exercise. METHODS: After determination of V˙O(2max), CP, and W', seven subjects completed four separate exercise tests on a cycle ergometer on different days. Each protocol comprised a set of intervals: 60 s at a severe power output, followed by 30-s recovery at a lower prescribed power output. The intervals were repeated until exhaustion. These data were entered into a continuous equation predicting balance of W' remaining, assuming exponential reconstitution of the W'. The time constant was varied by an iterative process until the remaining modeled W' = 0 at the point of exhaustion. RESULTS: The time constants of W' recharge were negatively correlated with the difference between sub-CP recovery power and CP. The relationship was best fit by an exponential (r = 0.77). The model-predicted W' balance correlated with the temporal course of the rise in V˙O(2) (r = 0.82-0.96). The model accurately predicted exhaustion of the W' in a competitive cyclist during a road race. CONCLUSIONS: We have developed a function to track the dynamic state of the W' during intermittent exercise. This may have important implications for the planning and real-time monitoring of athletic performance.


Assuntos
Exercício Físico/fisiologia , Modelos Biológicos , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Avaliação da Capacidade de Trabalho , Adulto , Teste de Esforço , Fadiga/fisiopatologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...