Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Physiol Perform ; 18(4): 335-346, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848906

RESUMO

Scientific interest in pacing goes back >100 years. Contemporary interest, both as a feature of athletic competition and as a window into understanding fatigue, goes back >30 years. Pacing represents the pattern of energy use designed to produce a competitive result while managing fatigue of different origins. Pacing has been studied both against the clock and during head-to-head competition. Several models have been used to explain pacing, including the teleoanticipation model, the central governor model, the anticipatory-feedback-rating of perceived exertion model, the concept of a learned template, the affordance concept, the integrative governor theory, and as an explanation for "falling behind." Early studies, mostly using time-trial exercise, focused on the need to manage homeostatic disturbance. More recent studies, based on head-to-head competition, have focused on an improved understanding of how psychophysiology, beyond the gestalt concept of rating of perceived exertion, can be understood as a mediator of pacing and as an explanation for falling behind. More recent approaches to pacing have focused on the elements of decision making during sport and have expanded the role of psychophysiological responses including sensory-discriminatory, affective-motivational, and cognitive-evaluative dimensions. These approaches have expanded the understanding of variations in pacing, particularly during head-to-head competition.


Assuntos
Esportes , Humanos , Esportes/fisiologia , Motivação , Percepção , Fadiga , Psicofisiologia
2.
Physiol Rep ; 4(19)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27688431

RESUMO

The sustainable duration of severe intensity exercise is well-predicted by critical power (CP) and the curvature constant (W'). The development of the W'BAL model allows for the pattern of W' expenditure and reconstitution to be characterized and this model has been applied to intermittent exercise protocols. The purpose of this investigation was to assess the influence of relaxation phase duration and exercise intensity on W' reconstitution during dynamic constant power severe intensity exercise. Six men (24.6 ± 0.9 years, height: 173.5 ± 1.9 cm, body mass: 78.9 ± 5.6 kg) performed severe intensity dynamic handgrip exercise to task failure using 50% and 20% duty cycles. The W'BAL model was fit to each exercise test and the time constant for W' reconstitution (τW') was determined. The τW' was significantly longer for the 50% duty cycle (1640 ± 262 sec) than the 20% duty cycle (863 ± 84 sec, P = 0.02). Additionally, the relationship between τW' and CP was well described as an exponential decay (r(2) = 0.90, P < 0.0001). In conclusion, the W'BAL model is able to characterize the expenditure and reconstitution of W' across the contraction-relaxation cycles comprising severe intensity constant power handgrip exercise. Moreover, the reconstitution of W' during constant power severe intensity exercise is influenced by the relative exercise intensity, the duration of relaxation between contractions, and CP.


Assuntos
Exercício Físico/fisiologia , Força da Mão/fisiologia , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Adulto , Metabolismo Energético/fisiologia , Teste de Esforço/métodos , Tolerância ao Exercício , Humanos , Masculino , Modelos Biológicos , Músculo Esquelético/fisiologia , Avaliação da Capacidade de Trabalho , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...