Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(15): 27004-27014, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236881

RESUMO

We report on III-nitride-based micro-light-emitting diodes (µLEDs) operating at 450 nm wavelength with diameters down to 2 µm. Devices with a standard LED structure followed by a tunnel junction were grown by plasma-assisted molecular beam epitaxy. The emission size of µLEDs was defined by shallow He+ implantation of the tunnel junction region. The ion implantation process allows to create flat devices, applicable to further epitaxial regrowth. The shift of current density for the maximum external quantum efficiency as a function of µLEDs diameter was observed. This effect may be a fingerprint of the change in the external efficiency related to the lateral carrier diffusion (limited by holes) in InGaN quantum wells.

2.
Opt Express ; 29(2): 1824-1837, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726388

RESUMO

Nitride-based light-emitting diodes (LEDs) are well known to suffer from a high built-in electric field in the quantum wells (QWs). In this paper we determined to what extent the electric field is screened by injected current. In our approach we used high pressure to study this evolution. In LEDs with a narrow QW (2.6 nm) we found that even at a high injection current a large portion of built-in field remains. In LEDs with very wide QWs (15 and 25 nm) the electric field is fully screened even at the lowest currents. Furthermore, we examined LEDs with a tunnel junction in two locations - above and below the active region. This allowed us to study the cases of parallel and antiparallel fields in the well and in the barriers.

3.
Opt Express ; 28(23): 35321-35329, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182980

RESUMO

In this paper, we demonstrate a novel approach utilizing tunnel junction (TJ) to realize GaN-based distributed feedback (DFB) laser diodes (LDs). Thanks to the use of the TJ the top metal contact is moved to the side of the ridge and the DFB grating is placed directly on top of the ridge. The high refractive index contrast between air and GaN, together with the high overlap of optical mode with the grating, provides a high coupling coefficient. The demonstrated DFB LD operates at λ=450.15 nm with a side mode suppression ratio higher than 35dB. The results are compared to a standard Fabry-Perot LD.

4.
Opt Express ; 27(4): 5784-5791, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876173

RESUMO

We demonstrate a stack of two III-nitride laser diodes (LDs) interconnected by a tunnel junction grown by plasma-assisted molecular beam epitaxy. Hydrogen-free growth is used to obtain as-grown p-type conductivity essential for buried tunnel junctions (TJ). We show the impact of the design of tunnel junction. In particular, we show that, apart from the beneficial piezoelectric polarization inside the TJ, heavy doping reduces the differential resistivity even further. The device starts to lase at a wavelength of 459 nm with a slope efficiency (SE) of 0.7 W/A followed by lasing at 456 nm from the second active region doubling the total SE to 1.4 W/A. This demonstration opens new possibilities for the fabrication of stacks of ultraviolet and visible high power pulsed III-nitride LD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...