Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 62(45): 18952-18959, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020788

RESUMO

The application of photocatalysis for the disinfection of water has been extensively reported over the past 30 years. Titanium dioxide (TiO2) has been the most widely and successfully used photocatalyst to date; however, it is not without its limitations. Frequently observed long lag times, sometimes up to 60 min, before bacterial inactivation begins and the presence of residual microorganisms, for example, up to 104 colony forming units, remaining after treatment are ongoing challenges with this particular photocatalyst. It is therefore important to find alternative photocatalysts that can address these issues. In this study, we compared the disinfection capacity of TiO2 with that of zinc oxide (ZnO) using Escherichia coli as a model organism in both a suspended and immobilized catalyst system. Our results showed that ZnO was superior to TiO2 in a number of areas. Not only were bacterial rates of destruction much quicker with ZnO, but no lag time was observed prior to inactivation in suspended systems. Furthermore, complete bacterial destruction was observed within the treatment times under investigation. The greater efficiency of ZnO is believed to be due to the decomposition of the bacterial cell wall being driven by hydrogen peroxide as opposed to hydroxyl radicals. The results reported in this paper show that ZnO is a more efficient and cost-effective photocatalyst than TiO2 and that it represents a viable alternative photocatalyst for water disinfection processes.

2.
ACS Catal ; 13(13): 8574-8587, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37441233

RESUMO

Glucose is a key intermediate in cellulose photoreforming for H2 production. This work presents a mechanistic investigation of glucose photoreforming over TiO2 and Pt/m-TiO2 catalysts. Analysis of the intermediates formed in the process confirmed the α-scission mechanism of glucose oxidation forming arabinose (Cn-1 sugar) and formic acid in the initial oxidation step. The selectivity to sugar products and formic acid differed over Pt/TiO2 and TiO2, with Pt/TiO2 showing the lower selectivity to formic acid due to enhanced adsorption/conversion of formic acid over Pt/TiO2. In situ ATR-IR spectroscopy of glucose photoreforming showed the presence of molecular formic acid and formate on the surface of both catalysts at low glucose conversions, suggesting that formic acid oxidation could dominate surface reactions in glucose photoreforming. Further in situ ATR-IR of formic acid photoreforming showed Pt-TiO2 interfacial sites to be key for formic acid oxidation as TiO2 was unable to convert adsorbed formic acid/formate. Isotopic studies of the photoreforming of formic acid in D2O (with different concentrations) showed that the source of the protons (to form H2 at Pt sites) was determined by the relative surface coverage of adsorbed water and formic acid.

3.
J Phys Chem A ; 127(23): 5039-5047, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257064

RESUMO

Many recent research studies have reported indirect methods for the detection and quantification of OH radicals generated during photocatalysis. The short lifespan and high reactivity of these radicals make indirect detection using probes such as coumarin a more viable quantification method. Hydroxyl radical production is commonly monitored using fluorescence spectroscopy to determine the concentration of the compound 7-hydroxycoumarin, which is formed from hydroxyl radical attack on coumarin. There are, however, a number of additional hydroxylated coumarins generated during this process, which are less amenable to detection by fluorescence spectroscopy. Consequently, limitations and inaccuracies of this method have previously been reported in the literature. As an alternative approach to those previously reported, this work has developed an electrochemical screening method using coumarin as a OH radical trap, that is capable of in situ monitoring of not only 7-hydroxycoumarin, but all the main mono-hydroxylated products formed. As a result, this technique is a more representative and comprehensive method for the quantification of OH radicals produced by photocatalysts using coumarin as a probe molecule. Moreover, the electroanalytical method provides a portable, rapid, sensitive, and accurate in situ method for the monitoring of OH radical formation without the need for sample preparation.

4.
Water Res ; 226: 119299, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323220

RESUMO

Cyanobacteria and their toxic secondary metabolites present challenges for water treatment globally. In this study we have assessed TiO2 immobilized onto recycled foamed glass beads by a facile calcination method, combined in treatment units with 365 nm UV-LEDs. The treatment system was deployed in mesocosms within a eutrophic Brazilian drinking water reservoir. The treatment units were deployed for 7 days and suppressed cyanobacterial abundance by 85% while at the same time enhancing other water quality parameters; turbidity and transparency improved by 40 and 81% respectively. Genomic analysis of the microbiota in the treated mesocosms revealed that the composition of the cyanobacterial community was affected and the abundance of Bacteroidetes and Proteobacteria increased during cyanobacterial suppression. The effect of the treatment on zooplankton and other eukaryotes was also monitored. The abundance of zooplankton decreased while Chrysophyte and Alveolata loadings increased. The results of this proof-of-concept study demonstrate the potential for full-scale, in-reservoir application of advanced oxidation processes as complementary water treatment processes.


Assuntos
Cianobactérias , Água Potável , Animais , Titânio , Zooplâncton , Fitoplâncton
5.
ACS Sustain Chem Eng ; 10(37): 12107-12116, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36161097

RESUMO

The valorization of biomass via photocatalysis is an area of expanding research with advances in new technologies and materials with a view toward enhanced sustainability being reported. A significant challenge within this field, however, is understanding the impact photocatalysis has on more recalcitrant compounds present in biomass, such as lignin. Moreover, the current state of lignin model compound research is still largely focused on the breakdown of small models containing typically only one linkage. Described herein is the use of TiO2-mediated photocatalysis for the degradation of a representative hexameric lignin model compound which contains multiple linkages (e.g., 5-5', ß-5, and ß-O-4). The results revealed that while cleavage of the ß-5 and ß-O-4 occurred, the 5-5' appeared to remain intact within the identified reaction intermediates. To understand some of the more fundamental questions, a dimeric compound with a biphenyl linkage was synthesized and studied under photocatalytic conditions. The proposal of intermediates and pathways of degradation based on the studies conducted is presented and discussed herein.

6.
Top Curr Chem (Cham) ; 380(5): 33, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717466

RESUMO

Photocatalytic reforming of biomass has emerged as an area of significant interest within the last decade. The number of papers published in the literature has been steadily increasing with keywords such as 'hydrogen' and 'visible' becoming prominent research topics. There are likely two primary drivers behind this, the first of which is that biomass represents a more sustainable photocatalytic feedstock for reforming to value-added products and energy. The second is the transition towards achieving net zero emission targets, which has increased focus on the development of technologies that could play a role in future energy systems. Therefore, this review provides a perspective on not only the current state of the research but also a future outlook on the potential roadmap for photocatalytic reforming of biomass. Producing energy via photocatalytic biomass reforming is very desirable due to the ambient operating conditions and potential to utilise renewable energy (e.g., solar) with a wide variety of biomass resources. As both interest and development within this field continues to grow, however, there are challenges being identified that are paramount to further advancement. In reviewing both the literature and trajectory of the field, research priorities can be identified and utilised to facilitate fundamental research alongside whole systems evaluation. Moreover, this would underpin the enhancement of photocatalytic technology with a view towards improving the technology readiness level and promoting engagement between academia and industry.


Assuntos
Hidrogênio , Tecnologia , Biomassa
7.
ACS Sustain Chem Eng ; 10(15): 4862-4871, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574430

RESUMO

Photoreforming of cellulose is a promising route for sustainable H2 production. Herein, ball-milling (BM, with varied treatment times of 0.5-24 h) was employed to pretreat microcrystalline cellulose (MCC) to improve its activity in photoreforming over a Pt/TiO2 catalyst. It was found that BM treatment reduced the particle size, crystallinity index (CrI), and degree of polymerization (DP) of MCC significantly, as well as produced amorphous celluloses (with >2 h treatment time). Amorphous cellulose water-induced recrystallization to cellulose II (as evidenced by X-ray diffraction (XRD) and solid-state NMR analysis) was observed in aqueous media. Findings of the work showed that the BM treatment was a simple and effective pretreatment strategy to improve photoreforming of MCC for H2 production, mainly due to the decreased particle size and, specifically in aqueous media, the formation of the cellulose II phase from the recrystallization of amorphous cellulose, the extent of which correlates well with the activity in photoreforming.

8.
Chemosphere ; 275: 130082, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33677269

RESUMO

Photocatalytic remediation technology has been shown to be a favorable approach for the removal of a range of environmental pollutants in water treatment. While this approach can often achieve complete degradation, often overlooked are reaction intermediates that are potentially as harmful as the original parent compound. In the case of photocatalytic oxidation of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA), we have recently shown that 4-chloro-2-methylphenol (CMP) is formed as the primary intermediate. To ensure the continued development of the technology, it is crucial to ensure the removal of both MCPA and CMP can be achieved by photocatalysis. Reported here is the enhanced photocatalytic removal and subsequent suppression of MCPA and CMP respectively, by the addition of small quantities of H2O2. While the addition of H2O2 often accelerates degradation rates (via increased OH radical production), it was found to restrict the formation of CMP in this study through competitive adsorption at the surface of TiO2. Based on the combination of MCPA removal coupled with supressed CMP formation, 0.5% H2O2 was determined to be an optimal loading for the process. Under these conditions 100% MCPA removal was achieved (to the limit of HPLC detection) after 45 min irradiation at a degradation rate of ∼1 mg L-1 min-1 (ƞphoton = 4.4), which also resulted in a ∼83% reduction in CMP formation when compared to a system with no H2O2 present.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Purificação da Água , Peróxido de Hidrogênio , Oxirredução
9.
J Hazard Mater ; 402: 123461, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32688192

RESUMO

While phthalate esters are commonly used as plasticizers to improve the flexibility and workability of polymeric materials, their presence and detection in various environments has become a significant concern. Phthalate esters are known to have endocrine-disrupting effects, which affects reproductive health and physical development. As a result, there is now increased focus and urgency to develop effective and energy efficient technologies capable of removing these harmful compounds from the environment. This review explores the use of semiconductor photocatalysis as an efficient and promising solution towards achieving removal and degradation of phthalate esters. A comprehensive review of photocatalysts reported in the literature demonstrates the range of materials including commercial TiO2, solar activated catalysts and composite materials capable of enhancing adsorption and degradation. The degradation pathways and kinetics are also considered to provide the reader with an insight into the photocatalytic mechanism of removal. In addition, through the use of two key platforms (the technology readiness level scale and electrical energy per order), the crucial parameters associated with advancing photocatalysis for phthalate ester removal are discussed. These include enhanced surface interaction, catalyst platform development, improved light delivery systems and overall system energy requirements with a view towards pilot scale and industrial deployment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...