Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 31(2): 175-83, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20139900

RESUMO

AIM: To test the hypothesis that PI3K/Akt/eNOS signaling has a protective role in a murine model of ventilation associated lung injury (VALI) through down-regulation of p38 MAPK signaling. METHODS: Male C57BL/J6 (wild-type, WT) or eNOS knockout mice (eNOS(-/-)) were exposed to mechanical ventilation (MV) with low (LV(T), 7 mL/kg) and high tidal volume (HV(T), 20 mL/kg) for 0-4 h. A subset of WT mice was administered the specific inhibitors of PI3K (100 nmol/L Wortmannin [Wort], ip) or of p38 MAPK (SB203580, 2 mg/kg, ip) 1 h before MV. Cultured type II alveolar epithelial cells C10 were exposed to 18% cyclic stretch for 2 h with or without 20 nmol/L Wort pretreatment. At the end of the experiment, the capillary leakage in vivo was assessed by extravasation of Evans blue dye (EBD), wet/dry weight ratio and lung lavage protein concentration. The lung tissue and cell lysate were also collected for protein and histological review. RESULTS: MV decreased PI3K/Akt phosphorylation and eNOS expression but increased phospho-p38 MAPK expression along with a lung leakage of EBD. Inhibitions of phospho-Akt by Wort worsen the lung edema, whereas inhibition of p38 MAPK kinase restored activation of Akt together with alleviated capillary leakage. eNOS(-/-) mice showed an exacerbated lung edema and injury. The stretched C10 cells demonstrated that Wort diminished the activation of Akt, but potentiated phosphorylation of MAPK p38. CONCLUSION: Our results indicate that PI-3K/Akt/eNOS pathway has significant protective effects in VALI by preventing capillary leakage, and that there is a cross-talk between PI3K/Akt and p38 MAPK pathways in vascular barrier dysfunction resulting from VALI.


Assuntos
Pulmão/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estresse Mecânico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Pulmão/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Am J Physiol Lung Cell Mol Physiol ; 296(6): L1002-11, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19363121

RESUMO

The coagulation system is central to the pathophysiology of acute lung injury. We have previously demonstrated that the anticoagulant activated protein C (APC) prevents increased endothelial permeability in response to edemagenic agonists in endothelial cells and that this protection is dependent on the endothelial protein C receptor (EPCR). We currently investigate the effect of APC in a mouse model of ventilator-induced lung injury (VILI). C57BL/6J mice received spontaneous ventilation (control) or mechanical ventilation (MV) with high (HV(T); 20 ml/kg) or low (LV(T); 7 ml/kg) tidal volumes for 2 h and were pretreated with APC or vehicle via jugular vein 1 h before MV. In separate experiments, mice were ventilated for 4 h and received APC 30 and 150 min after starting MV. Indices of capillary leakage included bronchoalveolar lavage (BAL) total protein and Evans blue dye (EBD) assay. Changes in pulmonary EPCR protein and Rho-associated kinase (ROCK) were assessed using SDS-PAGE. Thrombin generation was measured via plasma thrombin-antithrombin complexes. HV(T) induced pulmonary capillary leakage, as evidenced by significant increases in BAL protein and EBD extravasation, without significantly increasing thrombin production. HV(T) also caused significant decreases in pulmonary, membrane-bound EPCR protein levels and increases in pulmonary ROCK-1. APC treatment significantly decreased pulmonary leakage induced by MV when given either before or after initiation of MV. Protection from capillary leakage was associated with restoration of EPCR protein expression and attenuation of ROCK-1 expression. In addition, mice overexpressing EPCR on the pulmonary endothelium were protected from HV(T)-mediated injury. Finally, gene microarray analysis demonstrated that APC significantly altered the expression of genes relevant to vascular permeability at the ontology (e.g., blood vessel development) and specific gene (e.g., MAPK-associated kinase 2 and integrin-beta(6)) levels. These findings indicate that APC is barrier-protective in VILI and that EPCR is a critical participant in APC-mediated protection.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Água Extravascular Pulmonar/metabolismo , Glicoproteínas/metabolismo , Proteína C/metabolismo , Respiração Artificial/efeitos adversos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar , Capilares/metabolismo , Permeabilidade Capilar/fisiologia , Receptor de Proteína C Endotelial , Expressão Gênica/fisiologia , Glicoproteínas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Proteína C/genética , Circulação Pulmonar/fisiologia , Edema Pulmonar/etiologia , Edema Pulmonar/metabolismo , Edema Pulmonar/fisiopatologia , Receptores de Superfície Celular , Estresse Mecânico , Quinases Associadas a rho/metabolismo
3.
J Appl Physiol (1985) ; 105(4): 1282-90, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18669934

RESUMO

Signaling via p38 MAP kinase has been implicated in the mechanotransduction associated with mechanical stress and ventilator-induced lung injury (VILI). However, the critical downstream mediators of alveolar injury remain incompletely defined. We provide evidence that high-tidal volume mechanical ventilation (HVt MV) rapidly activates caspases within the lung, resulting in increased alveolar cell apoptosis. Antagonism of MV-induced p38 MAP kinase activity with SB-203580 suppresses both MV-induced caspase activity and alveolar apoptosis, placing p38 MAP kinase upstream of MV-induced caspase activation and programmed cell death. The reactive oxygen species (ROS)-producing enzyme xanthine oxidoreductase (XOR) is activated in a p38 MAP kinase-dependent manner following HVt MV. Allopurinol, a XOR inhibitor, also suppresses HVt MV-induced apoptosis, implicating HVt MV-induced ROS in the induction of alveolar cell apoptosis. Finally, systemic administration of the pan-caspase inhibitor, z-VAD-fmk, but not its inactive peptidyl analog, z-FA-fmk, blocks ventilator-induced apoptosis of alveolar cells and alveolar-capillary leak, indicating that caspase-dependent cell death is necessary for VILI-associated barrier dysfunction in vivo.


Assuntos
Apoptose , Pneumopatias/patologia , Alvéolos Pulmonares/patologia , Xantina Desidrogenase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Permeabilidade Capilar , Caspase 3/metabolismo , Caspase 7/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Pneumopatias/enzimologia , Pneumopatias/etiologia , Pneumopatias/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/enzimologia , Alvéolos Pulmonares/lesões , Respiração Artificial/efeitos adversos , Fatores de Tempo , Xantina Desidrogenase/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
4.
Am J Respir Cell Mol Biol ; 38(6): 639-46, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18192502

RESUMO

The de novo pathway of ceramide synthesis has been implicated in the pathogenesis of excessive lung apoptosis and murine emphysema. Intracellular and paracellular-generated ceramides may trigger apoptosis and propagate the death signals to neighboring cells, respectively. In this study we compared the sphingolipid signaling pathways triggered by the paracellular- versus intracellular-generated ceramides as they induce lung endothelial cell apoptosis, a process important in emphysema development. Intermediate-chain length (C(8:0)) extracellular ceramides, used as a surrogate of paracellular ceramides, triggered caspase-3 activation in primary mouse lung endothelial cells, similar to TNF-alpha-generated endogenous ceramides. Inhibitory siRNA against serine palmitoyl transferase subunit 1 but not acid sphingomyelinase inhibited both C(8:0) ceramide- and TNF-alpha (plus cycloheximide)-induced apoptosis, consistent with the requirement for activation of the de novo pathway of sphingolipid synthesis. Tandem mass spectrometry analysis detected increases in both relative and absolute levels of C(16:0) ceramide in response to C(8:0) and TNF-alpha treatments. These results implicate the de novo pathway of ceramide synthesis in the apoptotic effects of both paracellular ceramides and TNF-alpha-stimulated intracellular ceramides in primary lung endothelial cells. The serine palmitoyl synthase-regulated ceramides synthesis may contribute to the amplification of pulmonary vascular injury induced by excessive ceramides.


Assuntos
Apoptose/fisiologia , Ceramidas/metabolismo , Células Endoteliais/metabolismo , Pulmão/citologia , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Animais , Caspase 3/metabolismo , Células Cultivadas , Ceramidas/química , Células Endoteliais/citologia , Ativação Enzimática , Humanos , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Am J Pathol ; 169(4): 1155-66, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17003475

RESUMO

alpha-1 Antitrypsin (A1AT) is an abundant circulating serpin with a postulated function in the lung of potently inhibiting neutrophil-derived proteases. Emphysema attributable to A1AT deficiency led to the concept that a protease/anti-protease imbalance mediates cigarette smoke-induced emphysema. We hypothesized that A1AT has other pathobiological relevant functions in addition to elastase inhibition. We demonstrate a direct prosurvival effect of A1AT through inhibition of lung alveolar endothelial cell apoptosis. Primary pulmonary endothelial cells internalized human A1AT, which co-localized with and inhibited staurosporine-induced caspase-3 activation. In cell-free studies, native A1AT, but not conformers lacking an intact reactive center loop, inhibited the interaction of recombinant active caspase-3 with its specific substrate. Furthermore, overexpression of human A1AT via replication-deficient adeno-associated virus markedly attenuated alveolar wall destruction and oxidative stress caused by caspase-3 instillation in a mouse model of apoptosis-dependent emphysema. Our findings suggest that direct inhibition of active caspase-3 by A1AT may represent a novel anti-apoptotic mechanism relevant to disease processes characterized by excessive structural cell apoptosis, oxidative stress, and inflammation, such as pulmonary emphysema.


Assuntos
Apoptose , Caspase 3/metabolismo , Inibidores de Caspase , Pulmão/enzimologia , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/farmacologia , Animais , Capilares/citologia , Capilares/efeitos dos fármacos , Capilares/enzimologia , Sistema Livre de Células , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Humanos , Pulmão/irrigação sanguínea , Pulmão/citologia , Pneumopatias/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...