Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenetics ; 19(1): 2318517, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38404006

RESUMO

Supplementation of one-carbon (1C) metabolism micronutrients, which include B-vitamins and methionine, is essential for the healthy growth and development of Atlantic salmon (Salmo salar). However, the recent shift towards non-fish meal diets in salmon aquaculture has led to the need for reassessments of recommended micronutrient levels. Despite the importance of 1C metabolism in growth performance and various cellular regulations, the molecular mechanisms affected by these dietary alterations are less understood. To investigate the molecular effect of 1C nutrients, we analysed gene expression and DNA methylation using two types of omics data: RNA sequencing (RNA-seq) and reduced-representation bisulphite sequencing (RRBS). We collected liver samples at the end of a feeding trial that lasted 220 days through the smoltification stage, where fish were fed three different levels of four key 1C nutrients: methionine, vitamin B6, B9, and B12. Our results indicate that the dosage of 1C nutrients significantly impacts genetic and epigenetic regulations in the liver of Atlantic salmon, particularly in biological pathways related to protein synthesis. The interplay between DNA methylation and gene expression in these pathways may play an important role in the mechanisms underlying growth performance affected by 1C metabolism.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Metilação de DNA , Fígado/metabolismo , Dieta , Vitaminas , Metionina/metabolismo , Expressão Gênica
2.
Nat Commun ; 14(1): 232, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646694

RESUMO

Methylation of cytosines is a prototypic epigenetic modification of the DNA. It has been implicated in various regulatory mechanisms across the animal kingdom and particularly in vertebrates. We mapped DNA methylation in 580 animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-scale DNA methylation profiles of multiple organs. Bioinformatic analysis of this large dataset quantified the association of DNA methylation with the underlying genomic DNA sequence throughout vertebrate evolution. We observed a broadly conserved link with two major transitions-once in the first vertebrates and again with the emergence of reptiles. Cross-species comparisons focusing on individual organs supported a deeply conserved association of DNA methylation with tissue type, and cross-mapping analysis of DNA methylation at gene promoters revealed evolutionary changes for orthologous genes. In summary, this study establishes a large resource of vertebrate and invertebrate DNA methylomes, it showcases the power of reference-free epigenome analysis in species for which no reference genomes are available, and it contributes an epigenetic perspective to the study of vertebrate evolution.


Assuntos
Metilação de DNA , Genoma , Animais , Metilação de DNA/genética , Genoma/genética , Invertebrados/genética , Vertebrados/genética , Vertebrados/metabolismo , Epigênese Genética , DNA/metabolismo
3.
BMC Genomics ; 23(1): 115, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144563

RESUMO

BACKGROUND: DNA methylation has an important role in intergenerational inheritance. An increasing number of studies have reported evidence of germline inheritance of DNA methylation induced by nutritional signals in mammals. Vitamins and minerals as micronutrients contribute to growth performance in vertebrates, including Atlantic salmon (Salmo salar), and also have a role in epigenetics as environmental factors that alter DNA methylation status. It is important to understand whether micronutrients in the paternal diet can influence the offspring through alterations of DNA methylation signatures in male germ cells. RESULTS: Here, we show the effect of micronutrient supplementation on DNA methylation profiles in the male gonad through a whole life cycle feeding trial of Atlantic salmon fed three graded levels of micronutrient components. Our results strongly indicate that micronutrient supplementation affects the DNA methylation status of genes associated with cell signalling, synaptic signalling, and embryonic development. In particular, it substantially affects DNA methylation status in the promoter region of a glutamate receptor gene, glutamate receptor ionotropic, NMDA 3A-like (grin3a-like), when the fish are fed both medium and high doses of micronutrients. Furthermore, two transcription factors, histone deacetylase 2 (hdac2) and a zinc finger protein, bind to the hyper-methylated site in the grin3a-like promoter. An estimated function of hdac2 together with a zinc finger indicates that grin3a-like has a potential role in intergenerational epigenetic inheritance and the regulation of embryonic development affected by paternal diet. CONCLUSIONS: The present study demonstrates alterations of gene expression patterns and DNA methylation signatures in the male gonad when Atlantic salmon are fed different levels of micronutrients. Alterations of gene expression patterns are of great interest because the gonads are supposed to have limited metabolic activities compared to other organs, whereas alterations of DNA methylation signatures are of great importance in the field of nutritional epigenetics because the signatures affected by nutrition could be transferred to the next generation. We provide extensive data resources for future work in the context of potential intergenerational inheritance through the male germline.


Assuntos
Metilação de DNA , Epigênese Genética , Animais , Suplementos Nutricionais , Desenvolvimento Embrionário , Feminino , Masculino , Micronutrientes , Gravidez , Receptores de Glutamato , Testículo
4.
Br J Nutr ; 127(1): 23-34, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33658100

RESUMO

This study evaluated how different forms of selenium (Se) supplementation into rainbow trout broodstock diets modified the one-carbon metabolism of the progeny after the beginning of exogenous feeding and followed by hypoxia challenge. The progeny of three groups of rainbow trout broodstock fed either a control diet (Se level: 0·3 µg/g) or a diet supplemented with inorganic sodium selenite (Se level: 0·6 µg/g) or organic hydroxy-selenomethionine (Se level: 0·6 µg/g) was cross-fed with diets of similar Se composition for 11 weeks. Offspring were sampled either before or after being subjected to an acute hypoxic stress (1·7 mg/l dissolved oxygen) for 30 min. In normoxic fry, parental Se supplementation allowed higher glutathione levels compared with fry originating from parents fed the control diet. Parental hydroxy-selenomethionine treatment also increased cysteine and cysteinyl-glycine concentrations in fry. Dietary Se supplementation decreased glutamate-cysteine ligase (cgl) mRNA levels. Hydroxy-selenomethionine feeding also lowered the levels of some essential free amino acids in muscle tissue. Supplementation of organic Se to parents and fry reduced betaine-homocysteine S-methyltransferase (bhmt) expression in fry. The hypoxic stress decreased whole-body homocysteine, cysteine, cysteinyl-glycine and glutathione levels. Together with the higher mRNA levels of cystathionine beta-synthase (cbs), a transsulphuration enzyme, this suggests that under hypoxia, glutathione synthesis through transsulphuration might have been impaired by depletion of a glutathione precursor. In stressed fry, S-adenosylmethionine levels were significantly decreased, but S-adenosylhomocysteine remained stable. Decreased bhmt and adenosylmethionine decarboxylase 1a (amd1a) mRNA levels in stressed fry suggest a nutritional programming by parental Se also on methionine metabolism of rainbow trout.


Assuntos
Oncorhynchus mykiss , Selênio , Animais , Antioxidantes/metabolismo , Carbono/metabolismo , Cisteína , Dieta/veterinária , Suplementos Nutricionais , Glutationa/metabolismo , Hipóxia , Oncorhynchus mykiss/metabolismo , RNA Mensageiro/metabolismo , Selênio/metabolismo , Selenometionina/metabolismo
6.
Br J Nutr ; 127(9): 1289-1302, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34176547

RESUMO

A moderate surplus of the one carbon (1C) nutrients methionine, folic acid, vitamin B6 and B12 above dietary recommendations for Atlantic salmon has shown to improve growth and reduce hepatosomatic index in the on-growing saltwater period when fed throughout smoltification. Metabolic properties and molecular mechanisms determining the improved growth are unexplored. Here, we investigate metabolic and transcriptional signatures in skeletal muscle taken before and after smoltification to acquire deeper insight into pathways and possible nutrient­gene interactions. A control feed (Ctrl) or 1C nutrient surplus feed (1C+) were fed to Atlantic salmon 6 weeks prior to smoltification until 3 months after saltwater transfer. Both metabolic and gene expression signatures revealed significant 1C nutrient-dependent changes already at pre-smolt, but differences intensified when analysing post-smolt muscle. Transcriptional differences revealed lower expression of genes related to translation, growth and amino acid metabolisation in post-smolt muscle when fed additional 1C nutrients. The 1C+ group showed less free amino acid and putrescine levels, and higher methionine and glutathione amounts in muscle. For Ctrl muscle, the overall metabolic profile suggests a lower amino acid utilisation for protein synthesis, and increased methionine metabolisation in polyamine and redox homoeostasis, whereas transcription changes are indicative of compensatory growth regulation at local tissue level. These findings point to fine-tuned nutrient­gene interactions fundamental for improved growth capacity through better amino acid utilisation for protein accretion when salmon was fed additional 1C nutrients throughout smoltification. It also highlights potential nutritional programming strategies on improved post-smolt growth through 1C+ supplementation before and throughout smoltification.


Assuntos
Salmo salar , Animais , Metionina , Vitamina B 6 , Ácido Fólico , Racemetionina , Vitaminas
7.
Genomics ; 113(5): 3050-3057, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245830

RESUMO

DNA methylation is one of the main epigenetic mechanisms that regulate gene expression in a manner that depends on the genomic context and varies considerably across taxa. This DNA modification was first found in nuclear genomes of eukaryote several decades ago and it has also been described in mitochondrial DNA. It has recently been shown that mitochondrial DNA is extensively methylated in mammals and other vertebrates. Our current knowledge of mitochondrial DNA methylation in fish is very limited, especially in non-model teleosts. In this study, using whole-genome bisulfite sequencing, we determined methylation patterns within non-CpG (CH) and CpG (CG) contexts in the mitochondrial genome of Nile tilapia, a non-model teleost of high economic importance. Our results demonstrate the presence of mitochondrial DNA methylation in this species predominantly within a non-CpG context, similarly to mammals. We found a strand-specific distribution of methylation, in which highly methylated cytosines were located on the minus strand. The D-loop region had the highest mean methylation level among all mitochondrial loci. Our data provide new insights into the potential role of epigenetic mechanisms in regulating metabolic flexibility of mitochondria in fish, with implications in various biological processes, such as growth and development.


Assuntos
5-Metilcitosina , Ciclídeos , Animais , Ciclídeos/genética , Ilhas de CpG , Metilação de DNA , Mamíferos/genética , Mitocôndrias/genética
8.
Epigenetics ; 16(11): 1217-1234, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33315488

RESUMO

Micronutrients (vitamins and minerals) have been less well studied compared to macronutrients (fats, proteins, and carbohydrates) although they play important roles in growth, metabolism, and maintenance of tissues. Hence, there is growing interest to understand the influence of micronutrients across various aspects in nutritional research. In the last two decades, aquaculture feeds have been shifted to containing more plant-based materials to meet the increasing demand and maintain the sustainability in the industry. A recent whole life cycle feeding trial of Atlantic salmon (Salmo salar) with graded levels of micronutrient packages has concluded that the levels of several B-vitamins and microminerals need to be increased from the current recommendation levels for optimal growth and fish welfare when plant-based diets are used. Here, we show the effect of micronutrient supplementation on hepatic transcriptional and epigenetic regulation in a dose dependent manner. . Specifically, our aim is to reveal the mechanisms of altered cell metabolism, which results in improved growth performance by micronutrient surpluses, at gene expression and DNA methylation levels. Our results strongly indicate that micronutrient supplementation suppresses gene expression in lipid metabolism in a dose-dependent manner and broadly affects DNA methylation in cell-adhesion and cell-signalling. In particular, it increases DNA methylation levels on the acetyl-CoA carboxylase alpha promoter in a concentration-dependent manner, which further suggests that acetyl-CoA carboxylase alpha is an upstream epigenetic regulator controlling its downstream lipid biosynthesis activities. This study demonstrates a comprehensive analysis to reveal an important role of micronutrients in lipid metabolism through epigenetic control of gene expression.


Assuntos
Epigênese Genética , Metabolismo dos Lipídeos , Animais , Metilação de DNA , Suplementos Nutricionais , Fígado/metabolismo , Micronutrientes/metabolismo
9.
Life (Basel) ; 10(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722369

RESUMO

Selenium is an essential micronutrient and its metabolism is closely linked to the methionine cycle and transsulfuration pathway. The present study evaluated the effect of two different selenium supplements in the diet of rainbow trout (Onchorhynchus mykiss) broodstock on the one-carbon metabolism and the hepatic DNA methylation pattern in the progeny. Offspring of three parental groups of rainbow trout, fed either a control diet (NC, basal Se level: 0.3 mg/kg) or a diet supplemented with sodium selenite (SS, 0.8 mg Se/kg) or hydroxy-selenomethionine (SO, 0.7 mg Se/kg), were collected at swim-up fry stage. Our findings suggest that parental selenium nutrition impacted the methionine cycle with lower free methionine and S-adenosylmethionine (SAM) and higher methionine synthase (mtr) mRNA levels in both selenium-supplemented treatments. DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) identified differentially methylated cytosines (DMCs) in offspring livers. These DMCs were related to 6535 differentially methylated genes in SS:NC, 6890 in SO:NC and 7428 in SO:SS, respectively. Genes with the highest methylation difference relate, among others, to the neuronal or signal transmitting and immune system which represent potential targets for future studies.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32376458

RESUMO

The Atlantic salmon aquaculture industry relies on adjustments of female broodstock spawning season to meet the demand for delivery of embryos outside the natural spawning season. Earlier results from zebrafish have shown that parental micronutrient status program offspring metabolism. Therefore, the main hypothesis of this study was to investigate if out-of-season (off-season) broodstock (spawning in June, in land-based recirculation systems) and their offspring deviate in micronutrient status when compared to broodstock and offspring from normal spawning season. Both seasons of female Atlantic salmon broodstock were fed the same diet and starved for approximately the same time interval prior to spawning. We compared nutrients related to the 1C metabolism (vitamin B12, folate, vitamin B6, methionine), free amino acids (FAAs) and lipid classes in broodstock muscle and liver tissues, and during offspring ontogeny. In general, the off-season broodstock showed higher levels of folate, vitamin B6 and selected FAAs in muscle tissue, and higher levels of folate and lipids (cholesterol and sphingomyelin) in liver tissue compared to normal-season. Furthermore, embryos from off-season had reduced amounts of all the measured lipid classes, like cholesterol and sphingomyelin, and lower levels of one type of folate and changes in FAAs and N-metabolites. We discovered significant differences between the seasons in mRNA levels of genes controlling fatty acid synthesis and 1C metabolism in both broodstock liver and offspring. Moreover, for genes controlling the methylation of DNA; both maintenance and de novo DNA methyltransferases (DNMTs) were expressed at higher levels in off-season compared to normal-season offspring. Our results show, in general that normal spawning season broodstock allocated more nutrients to eggs than off-season. Our results indicate a potential for improved maturation for off-season group to obtain a higher offspring growth potential, and this argues for a reassessment of the nutritional influence from broodstock to offspring and the consequences through nutritional programming.


Assuntos
Reprodução/fisiologia , Salmo salar/fisiologia , Ração Animal/análise , Animais , Animais Recém-Nascidos , Metilação de DNA , Feminino , Metabolismo dos Lipídeos , Fígado/metabolismo , Estado Nutricional , Salmo salar/genética , Estações do Ano
12.
PLoS One ; 14(8): e0220934, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31398226

RESUMO

Diet has been shown to influence epigenetic key players, such as DNA methylation, which can regulate the gene expression potential in both parents and offspring. Diets enriched in omega-6 and deficient in omega-3 PUFAs (low dietary omega-3/omega-6 PUFA ratio), have been associated with the promotion of pathogenesis of diseases in humans and other mammals. In this study, we investigated the impact of increased dietary intake of arachidonic acid (ARA), a physiologically important omega-6 PUFA, on 2 generations of zebrafish. Parental fish were fed either a low or a high ARA diet, while the progeny of both groups were fed the low ARA diet. We screened for DNA methylation on single base-pair resolution using reduced representation bisulfite sequencing (RRBS). The DNA methylation profiling revealed significant differences between the dietary groups in both parents and offspring. The majority of differentially methylated loci associated with high dietary ARA were found in introns and intergenic regions for both generations. Common loci between the identified differentially methylated loci in F0 and F1 livers were reported. We described overlapping gene annotations of identified methylation changes with differential expression, but based on a small number of overlaps. The present study describes the diet-associated methylation profiles across genomic regions, and it demonstrates that parental high dietary ARA modulates DNA methylation patterns in zebrafish liver.


Assuntos
Ácido Araquidônico/farmacologia , Metilação de DNA/genética , Dieta , Fígado/metabolismo , Peixe-Zebra/genética , Animais , Peso Corporal/efeitos dos fármacos , Análise por Conglomerados , Metilação de DNA/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Genoma , Fígado/efeitos dos fármacos , Anotação de Sequência Molecular
13.
Front Genet ; 10: 184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906313

RESUMO

Endocrine-disrupting contaminants have been associated with aberrant changes in epigenetic pathways in animals. In this study, zebrafish embryos were exposed bisphenol A (BPA) to search for associations between behavior and epigenetic mechanisms in fish. For concentration-dependent responses, embryos were exposed to a range of BPA concentrations (0.1 nM to 30 µM). Embryos were analyzed for locomotor activity at 3-, 4-, and 5-days post fertilization (dpf) in response to changing light conditions. Based on concentration-dependent effects on behavior and gene expression, 10 µM BPA [from 24 to 96 hours post fertilization (hpf)] was used for a whole-genome bisulfite sequencing (WGBS) study searching for genome-wide impacts on DNA methylation. Over the examined concentration ranges, hyperactivity was demonstrated for exposures to 0.001 µM BPA in comparison to embryos exposed to lower or higher BPA concentrations. Transcriptional analysis showed significant effects at >0.01 µM BPA for two genes related to DNA methylation (dnmt1, cbs). BPA exposure did not significantly affect global DNA methylation, but 20,474 differentially methylated (DM) sites in 4,873 genes were identified by WGBS analysis. Most DM sites were identified within gene bodies. The genes with the most DM sites were all protocadherin 2 gamma subfamily genes, related to axon targeting, synaptic development and neuronal survival. KEGG pathways most significantly affected by BPA exposure were phosphatidylinositol signaling system, followed by VEGF and MAPK signaling pathways. This study shows that BPA can affect zebrafish embryo swimming activity at very low concentrations as well as affecting numerous methylated sites in genes which are overrepresented in functionally relevant metabolic pathways. In conclusion, altered methylation patterns of genes associated with nervous system development might lead to abnormal swimming activity.

14.
Artigo em Inglês | MEDLINE | ID: mdl-30367964

RESUMO

The effects of low marine ingredient diets supplemented with graded levels (L1, L2, L3) of a micronutrient package (NP) on growth and metabolic responses were studied in diploid and triploid salmon parr. Diploids fed L2 showed significantly improved growth and reduced liver, hepatic steatosis, and viscerosomatic indices, while fish fed L3 showed suppressed growth rate 14 weeks post feeding. In contrast, dietary NP level had no effect on triploid performance. Whole body mineral composition, with exception of copper, did not differ between diet or ploidy. Whole fish total AAs and N-metabolites showed no variation by diet or ploidy. Free circulating AAs and white muscle N-metabolites were higher in triploids than diploids, while branch-chained amino acids were higher in diploids than triploids. Diploids had higher whole body α-tocopherol and hepatic vitamins K1 and K2 than triploids. Increased tissue B-vitamins for niacin and whole-body folate with dietary NP supplementation were observed in diploids but not triploids, while whole body riboflavin was higher in diploids than triploids. Hepatic transcriptome profiles showed that diploids fed diet L2 was more similar to that observed in triploids fed diet L3. In particular, sterol biosynthesis pathways were down-regulated, whereas cytochrome P450 metabolism was up-regulated. One­carbon metabolism was also affected by increasing levels of supplementation in both ploidies. Collectively, results suggested that, for optimised growth and liver function, micronutrient levels be supplemented above current National Research Council (2011) recommendations for Atlantic salmon when fed low marine ingredient diets. The study also suggested differences in nutritional requirements between ploidy.


Assuntos
Dieta/veterinária , Diploide , Fígado/metabolismo , Micronutrientes/administração & dosagem , Salmo salar/crescimento & desenvolvimento , Salmo salar/genética , Triploidia , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/fisiologia , Aquicultura/economia , Redução de Custos , Dieta/efeitos adversos , Dieta/economia , Óleos de Peixe/administração & dosagem , Óleos de Peixe/química , Óleos de Peixe/economia , Produtos Pesqueiros/análise , Produtos Pesqueiros/economia , Proteínas de Peixes/análise , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fígado/citologia , Fígado/crescimento & desenvolvimento , Micronutrientes/análise , Músculo Esquelético/química , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Necessidades Nutricionais , Valor Nutritivo , Óleos de Plantas/administração & dosagem , Óleos de Plantas/efeitos adversos , Óleos de Plantas/química , Óleos de Plantas/economia , Proteínas de Vegetais Comestíveis/administração & dosagem , Proteínas de Vegetais Comestíveis/efeitos adversos , Proteínas de Vegetais Comestíveis/análise , Proteínas de Vegetais Comestíveis/economia , Salmo salar/fisiologia , Escócia , Alimentos Marinhos/análise , Aumento de Peso
15.
PLoS One ; 13(8): e0201278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30070994

RESUMO

Disproportionate high intake of n-6 polyunsaturated fatty acids (PUFAs) in the diet is considered as a major human health concern. The present study examines changes in the hepatic gene expression pattern of adult male zebrafish progeny associated with high levels of the n-6 PUFA arachidonic acid (ARA) in the parental diet. The parental generation (F0) was fed a diet which was either low (control) or high in ARA (high ARA). Progenies of both groups (F1) were given the control diet. No differences in body weight were found between the diet groups within adult stages of either F0 or F1 generation. Few differentially expressed genes were observed between the two dietary groups in the F0 in contrast to the F1 generation. Several links were found between the previous metabolic analysis of the parental fish and the gene expression analysis in their adult progeny. Main gene expression differences in the progeny were observed related to lipid and retinoid metabolism by PPARα/RXRα playing a central role in mediating changes to lipid and long-chain fatty acid metabolism. The enrichment of genes involved in ß-oxidation observed in the progeny, corresponded to the increase in peroxisomal ß-oxidative degradation of long-chain fatty acids in the parental fish metabolomics data. Similar links between the F0 and F1 generation were identified for the methionine cycle and transsulfuration pathway in the high ARA group. In addition, estrogen signalling was found to be affected by parental high dietary ARA levels, where gene expression was opposite directed in F1 compared to F0. This study shows that the dietary n-3/n-6 PUFA ratio can alter gene expression patterns in the adult progeny. Whether the effect is mediated by permanent epigenetic mechanisms regulating gene expression in developing gametes needs to be further investigated.


Assuntos
Ácido Araquidônico/farmacologia , Gorduras na Dieta/farmacologia , Fígado/metabolismo , Transcriptoma/efeitos dos fármacos , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Animais
16.
Sci Rep ; 8(1): 3055, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445184

RESUMO

Micronutrient status of parents can affect long term health of their progeny. Around 2 billion humans are affected by chronic micronutrient deficiency. In this study we use zebrafish as a model system to examine morphological, molecular and epigenetic changes in mature offspring of parents that experienced a one-carbon (1-C) micronutrient deficiency. Zebrafish were fed a diet sufficient, or marginally deficient in 1-C nutrients (folate, vitamin B12, vitamin B6, methionine, choline), and then mated. Offspring livers underwent histological examination, RNA sequencing and genome-wide DNA methylation analysis. Parental 1-C micronutrient deficiency resulted in increased lipid inclusion and we identified 686 differentially expressed genes in offspring liver, the majority of which were downregulated. Downregulated genes were enriched for functional categories related to sterol, steroid and lipid biosynthesis, as well as mitochondrial protein synthesis. Differential DNA methylation was found at 2869 CpG sites, enriched in promoter regions and permutation analyses confirmed the association with parental feed. Our data indicate that parental 1-C nutrient status can persist as locus specific DNA methylation marks in descendants and suggest an effect on lipid utilization and mitochondrial protein translation in F1 livers. This points toward parental micronutrients status as an important factor for offspring health and welfare.


Assuntos
Micronutrientes/deficiência , Micronutrientes/metabolismo , Animais , Animais Recém-Nascidos , Metilação de DNA , Dieta/métodos , Suplementos Nutricionais , Epigênese Genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Ácido Fólico/metabolismo , Expressão Gênica , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metionina/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Vitamina B 12/metabolismo , Vitamina B 6/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
17.
Chemosphere ; 189: 730-743, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28988043

RESUMO

Screening has revealed that aquafeeds with high inclusion of plant material may contain small amounts of endocrine disrupting agricultural pesticides. In this work, bisphenol A (BPA) and genistein (GEN) were selected as model endocrine disrupting toxicants with impact on DNA methylation in fish. Atlantic salmon hepatocytes were exposed in vitro to four concentrations of BPA and GEN (0.1, 1.0, 10 and 100 µM) for 48 h. Toxicity endpoints included cytotoxicity, global DNA methylation, targeted transcriptomics and metabolomic screening (100 µM). GEN was not cytotoxic in concentrations up to 100 µM, whereas one out of two cell viability assays indicated a cytotoxic response to 100 µM BPA. Compared to the control, significant global DNA hypomethylation was observed at 1.0 µM BPA. Both compounds upregulated cyp1a1 transcription at 100 µM, while estrogenic markers esr1 and vtg1 responded strongest at 10 µM. Dnmt3aa transcription was downregulated by both compounds at 100 µM. Metabolomic screening showed that BPA and GEN resulted in significant changes in numerous biochemical pathways consistent with alterations in carbohydrate metabolism, indicating perturbation in glucose homeostasis and energy generation, and glutamate metabolism. Pathway analysis showed that while the superpathway of methionine degradation was among the most strongly affected pathways by BPA, GEN induced changes to uridine and pyrimidine biosynthesis. In conclusion, this mechanistic study proposes metabolites associated with glucose and glutamate metabolism, glucuronidation detoxification, as well as cyp1a1, vtg1, esr1, ar, dnmt3aa, cdkn1b and insig1 as transcriptional markers for BPA and GEN exposure in fish liver cells.


Assuntos
Compostos Benzidrílicos/toxicidade , Genisteína/toxicidade , Fígado/metabolismo , Fenóis/toxicidade , Salmo salar/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Inativação Metabólica/efeitos dos fármacos , Metabolômica , Regulação para Cima/efeitos dos fármacos
18.
Br J Nutr ; 117(8): 1075-1085, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28485254

RESUMO

This study explores the effect of high dietary arachidonic acid (ARA) levels (high ARA) compared with low dietary ARA levels (control) on the general metabolism using zebrafish as the model organism. The fatty acid composition of today's 'modern diet' tends towards higher n-6 PUFA levels in relation to n-3 PUFA. Low dietary n-3:n-6 PUFA ratio is a health concern, as n-6 PUFA give rise to eicosanoids and PG, which are traditionally considered pro-inflammatory, especially when derived from ARA. Juvenile zebrafish fed a high-ARA diet for 17 d had a lower whole-body n-3:n-6 PUFA ratio compared with zebrafish fed a low-ARA (control) diet (0·6 in the control group v. 0·2 in the high-ARA group). Metabolic profiling revealed altered levels of eicosanoids, PUFA, dicarboxylic acids and complex lipids such as glycerophospholipids and lysophospholipids as the most significant differences compared with the control group. ARA-derived hydroxylated eicosanoids, such as hydroxy-eicosatetraenoic acids, were elevated in response to high-ARA feed. In addition, increased levels of oxidised lipids and amino acids indicated an oxidised environment due to n-6 PUFA excess in the fish. To conclude, our results indicate that an ARA-enriched diet induces changes in complex lipids and immune-related eicosanoids and increases levels of oxidised lipids and amino acids, suggesting oxidative stress and lipid peroxidation.


Assuntos
Ácido Araquidônico/farmacologia , Eicosanoides/metabolismo , Ácidos Graxos/metabolismo , Ração Animal/análise , Animais , Ácido Araquidônico/administração & dosagem , Peso Corporal , Metabolismo dos Carboidratos , Coenzimas/metabolismo , Dieta , Eicosanoides/genética , Metabolismo Energético , Metabolismo dos Lipídeos , Oxirredução , Vitaminas/metabolismo , Peixe-Zebra
19.
Sci Rep ; 6: 34535, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731423

RESUMO

World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.


Assuntos
Apolipoproteínas , Regulação da Expressão Gênica no Desenvolvimento , Metabolismo dos Lipídeos/imunologia , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Apolipoproteínas/biossíntese , Apolipoproteínas/imunologia , Deficiência de Vitaminas/embriologia , Deficiência de Vitaminas/imunologia , Feminino , Masculino , Peixe-Zebra/embriologia , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/imunologia
20.
Chemosphere ; 120: 199-205, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25062025

RESUMO

Selenium (Se) and its derivatives are known to have protective effects against mercury (Hg) toxicity in mammals. In this study we wanted to evaluate whether Se co-exposure affect the transcription of methylmercury (MeHg) toxicity-relevant genes in early life stages of fish. Juvenile Atlantic cod were exposed to regular feed (control), Se-spiked feed (3mg Se kg(-1)), MeHg-spiked feed (10mg Hg kg(-1)) or to Se- and MeHg-spiked feed (3mg Se kg(-1) and 10mg Hg kg(-1), respectively) for ten weeks. Liver tissue was harvested for transcriptional analysis when the fish were weighing 11.4 ± 3.2g. Accumulated levels of Hg in liver of the two groups of fish exposed to MeHg were 1.5mg Hg kg(-1) wet weight, or 44-fold higher than in the control group, while the Se concentrations differed with less than 2-fold between the fish groups. Selenium co-exposure had no effect on the accumulated levels of Hg in liver tissue; however, MeHg co-exposure reduced the accumulated level of Se. Dietary exposure to MeHg had no effect on fish growth. Interaction effects between Se and MeHg exposure were observed for the transcriptional levels of CAT, GPX1, GPX3, NFE2L2, UBA52, SEPP1 and DNMT1. Significant effects of MeHg exposure were seen for DNMT1 and PPARG, while effects of Se exposure were seen for GPX4B and SEPP1A, as well as for DNA methyltransferase activity. The transcriptional results suggest, by considering up-regulation as a proxy for negative impact and at the tested concentrations, a pro-oxidative effect of Se co-exposure with MeHg, rather than an antioxidative effect.


Assuntos
Proteínas de Peixes/genética , Gadus morhua/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Selênio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Proteínas de Peixes/metabolismo , Gadus morhua/genética , Gadus morhua/crescimento & desenvolvimento , Fígado/efeitos dos fármacos , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...