Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6709, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185591

RESUMO

Particle therapy (PT) used for cancer treatment can spare healthy tissue and reduce treatment toxicity. However, full exploitation of the dosimetric advantages of PT is not yet possible due to range uncertainties, warranting development of range-monitoring techniques. This study proposes a novel range-monitoring technique introducing the yet unexplored concept of simultaneous detection and imaging of fast neutrons and prompt-gamma rays produced in beam-tissue interactions. A quasi-monolithic organic detector array is proposed, and its feasibility for detecting range shifts in the context of proton therapy is explored through Monte Carlo simulations of realistic patient models and detector resolution effects. The results indicate that range shifts of [Formula: see text] can be detected at relatively low proton intensities ([Formula: see text] protons/spot) when spatial information obtained through imaging of both particle species are used simultaneously. This study lays the foundation for multi-particle detection and imaging systems in the context of range verification in PT.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Diagnóstico por Imagem , Prótons , Raios gama , Dosagem Radioterapêutica , Método de Monte Carlo , Imagens de Fantasmas
2.
Sci Rep ; 9(1): 14773, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31594973

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 2011, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765808

RESUMO

Uncertainties in the proton range in tissue during proton therapy limit the precision in treatment delivery. These uncertainties result in expanded treatment margins, thereby increasing radiation dose to healthy tissue. Real-time range verification techniques aim to reduce these uncertainties in order to take full advantage of the finite range of the primary protons. In this paper, we propose a novel concept for real-time range verification based on detection of secondary neutrons produced in nuclear interactions during proton therapy. The proposed detector concept is simple; consisting of a hydrogen-rich converter material followed by two charged particle tracking detectors, mimicking a proton recoil telescopic arrangement. Neutrons incident on the converter material are converted into protons through elastic and inelastic (n,p) interactions. The protons are subsequently detected in the tracking detectors. The information on the direction and position of these protons is then utilized in a new reconstruction algorithm to estimate the depth distribution of neutron production by the proton beam, which in turn is correlated with the primary proton range. In this paper, we present the results of a Monte Carlo feasibility study and show that the proposed concept could be used for real-time range verification with millimetric precision in proton therapy.


Assuntos
Método de Monte Carlo , Nêutrons/uso terapêutico , Terapia com Prótons , Estudos de Viabilidade , Imagens de Fantasmas , Medicina de Precisão , Fatores de Tempo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...