Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Stud Mycol ; 103: 87-212, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37342155

RESUMO

Chloridium is a little-studied group of soil- and wood-inhabiting dematiaceous hyphomycetes that share a rare mode of phialidic conidiogenesis on multiple loci. The genus has historically been divided into three morphological sections, i.e. Chloridium, Gongromeriza, and Psilobotrys. Sexual morphs have been placed in the widely perceived genus Chaetosphaeria, but unlike their asexual counterparts, they show little or no morphological variation. Recent molecular studies have expanded the generic concept to include species defined by a new set of morphological characters, such as the collar-like hyphae, setae, discrete phialides, and penicillately branched conidiophores. The study is based on the consilience of molecular species delimitation methods, phylogenetic analyses, ancestral state reconstruction, morphological hypotheses, and global biogeographic analyses. The multilocus phylogeny demonstrated that the classic concept of Chloridium is polyphyletic, and the original sections are not congeneric. Therefore, we abolish the existing classification and propose to restore the generic status of Gongromeriza and Psilobotrys. We present a new generic concept and define Chloridium as a monophyletic, polythetic genus comprising 37 species distributed in eight sections. In addition, of the taxa earlier referred to Gongromeriza, two have been redisposed to the new genus Gongromerizella. Analysis of published metabarcoding data showed that Chloridium is a common soil fungus representing a significant (0.3 %) proportion of sequence reads in environmental samples deposited in the GlobalFungi database. The analysis also showed that they are typically associated with forest habitats, and their distribution is strongly influenced by climate, which is confirmed by our data on their ability to grow at different temperatures. We demonstrated that Chloridium forms species-specific ranges of distribution, which is rarely documented for microscopic soil fungi. Our study shows the feasibility of using the GlobalFungi database to study the biogeography and ecology of fungi. Taxonomic novelties: New genus: Gongromerizella Réblová; New sections: Chloridium section Cryptogonytrichum Réblová, Hern.-Restr., M. Kolarík & F. Sklenar, Chloridium section Gonytrichopsis Réblová, Hern.-Restr., M. Kolarík & F. Sklenar, Chloridium section Metachloridium Réblová, Hern.-Restr., M. Kolarík & F. Sklenar, Chloridium section Volubilia Réblová, Hern.-Restr., M. Kolarík & F. Sklenar; New species: Chloridium bellum Réblová & Hern.-Restr., Chloridium biforme Réblová & Hern.-Restr., Chloridium detriticola Réblová & Hern.-Restr., Chloridium gamsii Réblová & Hern.-Restr., Chloridium guttiferum Réblová & Hern.-Restr., Chloridium moratum Réblová & Hern.-Restr., Chloridium peruense Réblová & Hern.-Restr., Chloridium novae-zelandiae Réblová & Hern.-Restr., Chloridium elongatum Réblová & Hern.-Restr., Chloridium volubile Réblová & Hern.-Restr.; New varieties: Chloridium bellum var. luteum Réblová & Hern.-Restr., Chloridium detriticola var. effusum Réblová & Hern.-Restr., Chloridium chloridioides var. convolutum Réblová & Hern.-Restr.; New combinations: Chloridium section Gonytrichum (Nees & T. Nees) Réblová, Hern.-Restr., M. Kolarík & F. Sklenar, Chloridium section Mesobotrys (Sacc.) Réblová, Hern.-Restr., M. Kolarík & F. Sklenar, Chloridium section Pseudophialocephala (M.S. Calabon et al.) Réblová, Hern.-Restr., M. Kolarík & F. Sklenar, Chloridium simile (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium chloridioides (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium subglobosum (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium fuscum (Corda) Réblová & Hern.-Restr., Chloridium ypsilosporum (Hol.-Jech.) Réblová & Hern.-Restr., Chloridium costaricense (G. Weber et al.) Réblová & Hern.-Restr., Chloridium cuneatum (N.G. Liu et al.) Réblová & Hern.-Restr., Fusichloridium cylindrosporum (W. Gams & Hol.-Jech.) Réblová, Gongromeriza myriocarpa (Fr.) Réblová, Gongromeriza pygmaea (P. Karst.) Réblová, Gongromerizella lignicola (F. Mangenot) Réblová, Gongromerizella pachytrachela (W. Gams & Hol.-Jech) Réblová, Gongromerizella pini (Crous & Akulov) Réblová; New name: Chloridium pellucidum Réblová & Hern.-Restr.; Epitypifications (basionyms): Chaetopsis fusca Corda, Gonytrichum caesium var. subglobosum W. Gams & Hol.-Jech.; Lectotypification (basionym): Gonytrichum caesium Nees & T. Nees. Citation: Réblová M, Hernández-Restrepo M, Sklenár F, Nekvindová J, Réblová K, Kolarík M (2022). Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys. Studies in Mycology 103: 87-212. doi: 10.3114/sim.2022.103.04.

2.
Stud Mycol ; 102: 53-93, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36760461

RESUMO

Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the number of species and subsequent recovery to 17 species in the last decade. The identification to species level is however problematic or impossible in some isolates even using DNA sequencing or MALDI-TOF mass spectrometry indicating a problem in the definition of species boundaries. To revise the species limits, we assembled a large dataset of 518 strains. From these, a total of 213 strains were selected for the final analysis according to their calmodulin (CaM) genotype, substrate and geography. This set was used for phylogenetic analysis based on five loci (benA, CaM, RPB2, Mcm7, Tsr1). Apart from the classical phylogenetic methods, we used multispecies coalescence (MSC) model-based methods, including one multilocus method (STACEY) and five single-locus methods (GMYC, bGMYC, PTP, bPTP, ABGD). Almost all species delimitation methods suggested a broad species concept with only four species consistently supported. We also demonstrated that the currently applied concept of species is not sustainable as there are incongruences between single-gene phylogenies resulting in different species identifications when using different gene regions. Morphological and physiological data showed overall lack of good, taxonomically informative characters, which could be used for identification of such a large number of existing species. The characters expressed either low variability across species or significant intraspecific variability exceeding interspecific variability. Based on the above-mentioned results, we reduce series Versicolores to four species, namely A. versicolor, A. creber, A. sydowii and A. subversicolor, and the remaining species are synonymized with either A. versicolor or A. creber. The revised descriptions of the four accepted species are provided. They can all be identified by any of the five genes used in this study. Despite the large reduction in species number, identification based on phenotypic characters remains challenging, because the variation in phenotypic characters is high and overlapping among species, especially between A. versicolor and A. creber. Similar to the 17 narrowly defined species, the four broadly defined species do not have a specific ecology and are distributed worldwide. We expect that the application of comparable methodology with extensive sampling could lead to a similar reduction in the number of cryptic species in other extensively studied Aspergillus species complexes and other fungal genera. Citation: Sklenár F, Glässnerová K, Jurjevic Z, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolarík M, Hubka V (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102 : 53-93. doi: 10.3114/sim.2022.102.02.

3.
Stud Mycol ; 102: 95-132, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36760462

RESUMO

The Aspergillus series Nigri contains biotechnologically and medically important species. They can produce hazardous mycotoxins, which is relevant due to the frequent occurrence of these species on foodstuffs and in the indoor environment. The taxonomy of the series has undergone numerous rearrangements, and currently, there are 14 species accepted in the series, most of which are considered cryptic. Species-level identifications are, however, problematic or impossible for many isolates even when using DNA sequencing or MALDI-TOF mass spectrometry, indicating a possible problem in the definition of species limits or the presence of undescribed species diversity. To re-examine the species boundaries, we collected DNA sequences from three phylogenetic markers (benA, CaM and RPB2) for 276 strains from series Nigri and generated 18 new whole-genome sequences. With the three-gene dataset, we employed phylogenetic methods based on the multispecies coalescence model, including four single-locus methods (GMYC, bGMYC, PTP and bPTP) and one multilocus method (STACEY). From a total of 15 methods and their various settings, 11 supported the recognition of only three species corresponding to the three main phylogenetic lineages: A. niger, A. tubingensis and A. brasiliensis. Similarly, recognition of these three species was supported by the GCPSR approach (Genealogical Concordance Phylogenetic Species Recognition) and analysis in DELINEATE software. We also showed that the phylogeny based on benA, CaM and RPB2 is suboptimal and displays significant differences from a phylogeny constructed using 5 752 single-copy orthologous proteins; therefore, the results of the delimitation methods may be subject to a higher than usual level of uncertainty. To overcome this, we randomly selected 200 genes from these genomes and performed ten independent STACEY analyses, each with 20 genes. All analyses supported the recognition of only one species in the A. niger and A. brasiliensis lineages, while one to four species were inconsistently delimited in the A. tubingensis lineage. After considering all of these results and their practical implications, we propose that the revised series Nigri includes six species: A. brasiliensis, A. eucalypticola, A. luchuensis (syn. A. piperis), A. niger (syn. A. vinaceus and A. welwitschiae), A. tubingensis (syn. A. chiangmaiensis, A. costaricensis, A. neoniger and A. pseudopiperis) and A. vadensis. We also showed that the intraspecific genetic variability in the redefined A. niger and A. tubingensis does not deviate from that commonly found in other aspergilli. We supplemented the study with a list of accepted species, synonyms and unresolved names, some of which may threaten the stability of the current taxonomy. Citation: Bian C, Kusuya Y, Sklenár F, D'hooge E, Yaguchi T, Ban S, Visagie CM, Houbraken J, Takahashi H, Hubka V (2022). Reducing the number of accepted species in Aspergillus series Nigri. Studies in Mycology 102: 95-132. doi: 10.3114/sim.2022.102.03.

4.
Stud Mycol ; 102: 1-51, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36760463

RESUMO

Aspergillus section Candidi encompasses white- or yellow-sporulating species mostly isolated from indoor and cave environments, food, feed, clinical material, soil and dung. Their identification is non-trivial due to largely uniform morphology. This study aims to re-evaluate the species boundaries in the section Candidi and present an overview of all existing species along with information on their ecology. For the analyses, we assembled a set of 113 strains with diverse origin. For the molecular analyses, we used DNA sequences of three house-keeping genes (benA, CaM and RPB2) and employed species delimitation methods based on a multispecies coalescent model. Classical phylogenetic methods and genealogical concordance phylogenetic species recognition (GCPSR) approaches were used for comparison. Phenotypic studies involved comparisons of macromorphology on four cultivation media, seven micromorphological characters and growth at temperatures ranging from 10 to 45 °C. Based on the integrative approach comprising four criteria (phylogenetic and phenotypic), all currently accepted species gained support, while two new species are proposed (A. magnus and A. tenebricus). In addition, we proposed the new name A. neotritici to replace an invalidly described A. tritici. The revised section Candidi now encompasses nine species, some of which manifest a high level of intraspecific genetic and/or phenotypic variability (e.g., A. subalbidus and A. campestris) while others are more uniform (e.g., A. candidus or A. pragensis). The growth rates on different media and at different temperatures, colony colours, production of soluble pigments, stipe dimensions and vesicle diameters contributed the most to the phenotypic species differentiation. Taxonomic novelties: New species: Aspergillus magnus Glässnerová & Hubka; Aspergillus neotritici Glässnerová & Hubka; Aspergillus tenebricus Houbraken, Glässnerová & Hubka. Citation: Glässnerová K, Sklenár F, Jurjevic Z, Houbraken J, Yaguchi T, Visagie CM, Gené J, Siqueira JPZ, Kubátová A, Kolarík M, Hubka V (2022). A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1-51. doi: 10.3114/sim.2022.102.01.

5.
Stud Mycol ; 99: 100120, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35003383

RESUMO

Since the last revision in 2015, the taxonomy of section Flavipedes evolved rapidly along with the availability of new species delimitation techniques. This study aims to re-evaluate the species boundaries of section Flavipedes members using modern delimitation methods applied to an extended set of strains (n = 90) collected from various environments. The analysis used DNA sequences of three house-keeping genes (benA, CaM, RPB2) and consisted of two steps: application of several single-locus (GMYC, bGMYC, PTP, bPTP) and multi-locus (STACEY) species delimitation methods to sort the isolates into putative species, which were subsequently validated using DELINEATE software that was applied for the first time in fungal taxonomy. As a result, four new species are introduced, i.e. A. alboluteus, A. alboviridis, A. inusitatus and A. lanuginosus, and A. capensis is synonymized with A. iizukae. Phenotypic analyses were performed for the new species and their relatives, and the results showed that the growth parameters at different temperatures and colonies characteristics were useful for differentiation of these taxa. The revised section harbors 18 species, most of them are known from soil. However, the most common species from the section are ecologically diverse, occurring in the indoor environment (six species), clinical samples (five species), food and feed (four species), droppings (four species) and other less common substrates/environments. Due to the occurrence of section Flavipedes species in the clinical material/hospital environment, we also evaluated the susceptibility of 67 strains to six antifungals (amphotericin B, itraconazole, posaconazole, voriconazole, isavuconazole, terbinafine) using the reference EUCAST method. These results showed some potentially clinically relevant differences in susceptibility between species. For example, MICs higher than those observed for A. fumigatus wild-type were found for both triazoles and amphotericin B for A. ardalensis, A. iizukae, and A. spelaeus whereas A. lanuginosus, A. luppiae, A. movilensis, A. neoflavipes, A. olivimuriae and A. suttoniae were comparable to or more susceptible as A. fumigatus. Finally, terbinafine was in vitro active against all species except A. alboviridis.

6.
Mycologia ; 112(2): 342-370, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32074019

RESUMO

Aspergillus section Nidulantes encompasses almost 80 homothallic and anamorphic species, mostly isolated from soil, plant material, or the indoor environment. Some species are clinically relevant or produce mycotoxins. This study reevaluated the species boundaries within several clades of section Nidulantes. Five data sets were assembled, each containing presumptive new species and their closest relatives, and phylogenetic and phenotypic analyses were performed. We tested the hypotheses that the newly isolated or reexamined strains constitute separate species (splitting approach) or should be treated as part of broadly defined species (lumping approach). Four DNA sequence loci were amplified, internal transcribed spacer (ITS) and large subunit (LSU) regions of the rDNA and partial sequences of the ß-tubulin (benA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2) genes. The latter three loci were used for the phylogenetic analysis and served as input for single-locus (GMYC, bGMYC, PTP, and bPTP) and multilocus (STACEY and BP&P) species delimitation analyses. The phenotypic analysis comprised macro- and micromorphology (including scanning electron microscopy) and comparison of cardinal growth temperatures. The phylogenetic analysis supported the splitting hypothesis in all cases, and based on the combined approach, we propose six new species, four that are homothallic and two anamorphic. Four new species were isolated from the indoor environment (Jamaica, Trinidad and Tobago, USA), one originated from soil (Australia), and one from a kangaroo rat cheek pouch (USA).


Assuntos
Aspergillus , Aspergillus/classificação , Aspergillus/citologia , Aspergillus/genética , Aspergillus/isolamento & purificação , Austrália , Genes Fúngicos , Jamaica , Tipagem de Sequências Multilocus , Filogenia , Trinidad e Tobago , Estados Unidos
7.
Stud Mycol ; 93: 1-63, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30108412

RESUMO

Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. togoensis in the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceus and A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamarii and A. tamarii while the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergii and A. tamarii. Furthermore, A. hancockii produced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericola and A. sergii strains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceus and A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojae and A. subflavus. An overview of other small molecule extrolites produced in Aspergillus section Flavi is given.

8.
Persoonia ; 41: 142-174, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30728603

RESUMO

Although Aspergillus fumigatus is the major agent of invasive aspergillosis, an increasing number of infections are caused by its cryptic species, especially A. lentulus and the A. viridinutans species complex (AVSC). Their identification is clinically relevant because of antifungal drug resistance and refractory infections. Species boundaries in the AVSC are unresolved since most species have uniform morphology and produce interspecific hybrids in vitro. Clinical and environmental strains from six continents (n = 110) were characterized by DNA sequencing of four to six loci. Biological compatibilities were tested within and between major phylogenetic clades, and ascospore morphology was characterised. Species delimitation methods based on the multispecies coalescent model (MSC) supported recognition of ten species including one new species. Four species are confirmed opportunistic pathogens; A. udagawae followed by A. felis and A. pseudoviridinutans are known from opportunistic human infections, while A. felis followed by A. udagawae and A. wyomingensis are agents of feline sino-orbital aspergillosis. Recently described human-pathogenic species A. parafelis and A. pseudofelis are synonymized with A. felis and an epitype is designated for A. udagawae. Intraspecific mating assay showed that only a few of the heterothallic species can readily generate sexual morphs in vitro. Interspecific mating assays revealed that five different species combinations were biologically compatible. Hybrid ascospores had atypical surface ornamentation and significantly different dimensions compared to parental species. This suggests that species limits in the AVSC are maintained by both pre- and post-zygotic barriers and these species display a great potential for rapid adaptation and modulation of virulence. This study highlights that a sufficient number of strains representing genetic diversity within a species is essential for meaningful species boundaries delimitation in cryptic species complexes. MSC-based delimitation methods are robust and suitable tools for evaluation of boundaries between these species.

9.
Stud Mycol ; 88: 161-236, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29158611

RESUMO

Aspergillus section Restricti together with sister section Aspergillus (formerly Eurotium) comprises xerophilic species, that are able to grow on substrates with low water activity and in extreme environments. We adressed the monophyly of both sections within subgenus Aspergillus and applied a multidisciplinary approach for definition of species boundaries in sect. Restricti. The monophyly of sections Aspergillus and Restricti was tested on a set of 102 isolates comprising all currently accepted species and was strongly supported by Maximum likelihood (ML) and Bayesian inferrence (BI) analysis based on ß-tubulin (benA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) loci. More than 300 strains belonging to sect. Restricti from various isolation sources and four continents were characterized by DNA sequencing, and 193 isolates were selected for phylogenetic analyses and phenotypic studies. Species delimitation methods based on multispecies coalescent model were employed on DNA sequences from four loci, i.e., ID region of rDNA (ITS + 28S), CaM, benA and RPB2, and supported recognition of 21 species, including 14 new. All these species were also strongly supported in ML and BI analyses. All recognised species can be reliably identified by all four examined genetic loci. Phenotype analysis was performed to support the delimitation of new species and includes colony characteristics on seven cultivation media incubated at several temperatures, growth on an osmotic gradient (six media with NaCl concentration from 0 to 25 %) and analysis of morphology including scanning electron microscopy. The micromorphology of conidial heads, vesicle dimensions, temperature profiles and growth parameters in osmotic gradient were useful criteria for species identification. The vast majority of species in sect. Restricti produce asperglaucide, asperphenamate or both in contrast to species in sect. Aspergillus. Mycophenolic acid was detected for the first time in at least six members of the section. The ascomata of A. halophilicus do not contain auroglaucin, epiheveadride or flavoglaucin which are common in sect. Aspergillus, but shares the echinulins with sect. Aspergillus.

10.
Stud Mycol ; 88: 37-135, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28860671

RESUMO

Aspergillus section Aspergillus (formerly the genus Eurotium) includes xerophilic species with uniseriate conidiophores, globose to subglobose vesicles, green conidia and yellow, thin walled eurotium-like ascomata with hyaline, lenticular ascospores. In the present study, a polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of this section. Over 500 strains from various culture collections and new isolates obtained from indoor environments and a wide range of substrates all over the world were identified using calmodulin gene sequencing. Of these, 163 isolates were subjected to molecular phylogenetic analyses using sequences of ITS rDNA, partial ß-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) genes. Colony characteristics were documented on eight cultivation media, growth parameters at three incubation temperatures were recorded and micromorphology was examined using light microscopy as well as scanning electron microscopy to illustrate and characterize each species. Many specific extrolites were extracted and identified from cultures, including echinulins, epiheveadrides, auroglaucins and anthraquinone bisanthrons, and to be consistent in strains of nearly all species. Other extrolites are species-specific, and thus valuable for identification. Several extrolites show antioxidant effects, which may be nutritionally beneficial in food and beverages. Important mycotoxins in the strict sense, such as sterigmatocystin, aflatoxins, ochratoxins, citrinin were not detected despite previous reports on their production in this section. Adopting a polyphasic approach, 31 species are recognized, including nine new species. ITS is highly conserved in this section and does not distinguish species. All species can be differentiated using CaM or RPB2 sequences. For BenA, Aspergillus brunneus and A. niveoglaucus share identical sequences. Ascospores and conidia morphology, growth rates at different temperatures are most useful characters for phenotypic species identification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...