Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 16(5): 259-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315622

RESUMO

The ICH M10 guideline on bioanalytical method validation and sample analysis is being adopted since 2023. However, and inevitably, some paragraphs or requirements remain ambiguous and are open for different interpretations. In support of a harmonized interpretation by the industry and health authorities, the European Bioanalysis Forum organized a workshop on 14 November 2023 in Barcelona, Spain, to discuss unclear and/or ambiguous paragraphs which were identified by the European Bioanalysis Forum community and delegates of the workshop prior to the workshop. This manuscript reports back from the workshop with recommendations and aims at continuing an open scientific discussion within the industry and with regulators in support of a science-driven guideline for the bioanalytical community and in line with the ICH mission - that is, achieve greater harmonization worldwide to ensure that safe, effective and high-quality medicines are developed and registered in the most resource-efficient manner.


Assuntos
Projetos de Pesquisa , Relatório de Pesquisa , Retroalimentação
2.
J Proteome Res ; 21(7): 1718-1735, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605973

RESUMO

The plasma proteome has the potential to enable a holistic analysis of the health state of an individual. However, plasma biomarker discovery is difficult due to its high dynamic range and variability. Here, we present a novel automated analytical approach for deep plasma profiling and applied it to a 180-sample cohort of human plasma from lung, breast, colorectal, pancreatic, and prostate cancers. Using a controlled quantitative experiment, we demonstrate a 257% increase in protein identification and a 263% increase in significantly differentially abundant proteins over neat plasma. In the cohort, we identified 2732 proteins. Using machine learning, we discovered biomarker candidates such as STAT3 in colorectal cancer and developed models that classify the diseased state. For pancreatic cancer, a separation by stage was achieved. Importantly, biomarker candidates came predominantly from the low abundance region, demonstrating the necessity to deeply profile because they would have been missed by shallow profiling.


Assuntos
Neoplasias Pancreáticas , Proteômica , Biomarcadores , Proteínas Sanguíneas/análise , Humanos , Masculino , Proteoma/metabolismo
3.
BMC Biol ; 19(1): 161, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404410

RESUMO

BACKGROUND: Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimation. The CW constitutes the first physical barrier as well as a primary source of nutrients for microbes interacting with plants, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. RESULTS: Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection, but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. Abolishing ethylene signaling attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. CONCLUSIONS: Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.


Assuntos
Arabidopsis , Arabidopsis/genética , Parede Celular , Celulose , Mecanismos de Defesa , Etilenos , Fusarium , Regulação da Expressão Gênica de Plantas , Lignina , Doenças das Plantas/genética , Transcriptoma
4.
Mol Cell Proteomics ; 18(8): 1556-1571, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31147492

RESUMO

Sucrose as a product of photosynthesis is the major carbohydrate translocated from photosynthetic leaves to growing nonphotosynthetic organs such as roots and seeds. These growing tissues, besides carbohydrate supply, require uptake of water through aquaporins to enhance cell expansion during growth. Previous work revealed Sucrose Induced Receptor Kinase, SIRK1, to control aquaporin activity via phosphorylation in response to external sucrose stimulation. Here, we present the regulatory role of AT3G02880 (QSK1), a receptor kinase with a short external domain, in modulation of SIRK1 activity. Our results suggest that SIRK1 autophosphorylates at Ser-744 after sucrose treatment. Autophosphorylated SIRK1 then interacts with and transphosphorylates QSK1 and QSK2. Upon interaction with QSK1, SIRK1 phosphorylates aquaporins at their regulatory C-terminal phosphorylation sites. Consequently, in root protoplast swelling assays, the qsk1qsk2 mutant showed reduced water influx rates under iso-osmotic sucrose stimulation, confirming an involvement in the same signaling pathway as the receptor kinase SIRK1. Large-scale phosphoproteomics comparing single mutant sirk1, qsk1, and double mutant sirk1 qsk1 revealed that aquaporins were regulated by phosphorylation depending on an activated receptor kinase complex of SIRK1, as well as QSK1. QSK1 thereby acts as a coreceptor stabilizing and enhancing SIRK1 activity and recruiting substrate proteins, such as aquaporins.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Arabidopsis/genética , Fosforilação , Domínios Proteicos , Proteínas Quinases/genética , Transdução de Sinais , Sacarose/farmacologia
6.
Sci Rep ; 7: 44611, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300158

RESUMO

The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a 'potassium battery', providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais de Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biocatálise , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Células Vegetais/metabolismo , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Xenopus
7.
J Proteome Res ; 13(7): 3397-409, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24924143

RESUMO

External supply of sucrose to carbon-starved Arabidopsis seedlings induced changes in phosphorylation of Brassinosteroid Signaling Kinase 8 (BSK8) at two different sites. Serine S(20) lies within a phosphorylation hotspot at the N-terminal region of the protein, while S(213) is located within the kinase domain of BSK8. Upon sucrose supply phosphorylation of BSK8(S20) and BSK8(S213) showed opposite behavior with increasing phosphorylation of S(213) and decreased phosphorylation of S(20) at 5 min after sucrose supply. Here we aim to systematically analyze the effects of BSK8 mutations on downstream cellular regulatory events and characterize molecular functions of BSK8 and its phosphorylation. Comparative phosphoproteomic profiling of a bsk8 knockout mutant and wild type revealed potential targets in sucrose metabolism. Activity of sucrose-phosphate synthase (SPS) was decreased by phosphorylation at S(152), and SPS phosphorylation inversely correlated with sucrose-induced BSK8 activity. Furthermore, BSK8 was found to interact with BSL2, a Kelch-type phosphatase. On the basis of a combination of kinase activity measurements, SPS activity assays, and phosphorylation site mutations in BSK8 at S(20) and S(213), we conclude that regulation of SPS by BSK8 occurs through activation of a phosphatase that in turn may dephosphorylate SPS and thus activates the enzyme.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Glucosiltransferases/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Sequência de Aminoácidos , Arabidopsis/citologia , Células do Mesofilo/enzimologia , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Plântula/citologia , Plântula/enzimologia , Transdução de Sinais
8.
Front Plant Sci ; 3: 167, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876252

RESUMO

As heritage from early evolution, potassium (K(+)) is absolutely necessary for all living cells. It plays significant roles as stabilizer in metabolism and is important for enzyme activation, stabilization of protein synthesis, and neutralization of negative charges on cellular molecules as proteins and nucleic acids. Land plants even enlarged this spectrum of K(+) utilization after having gone ashore, despite the fact that K(+) is far less available in their new oligotrophic habitats than in sea water. Inevitably, plant cells had to improve and to develop unique transport systems for K(+) accumulation and distribution. In the past two decades a manifold of K(+) transporters from flowering plants has been identified at the molecular level. The recently published genome of the fern ally Selaginella moellendorffii now helps in providing a better understanding on the molecular changes involved in the colonization of land and the development of the vasculature and the seeds. In this article we present an inventory of K(+) transporters of this lycophyte and pigeonhole them together with their relatives from the moss Physcomitrella patens, the monocotyledon Oryza sativa, and two dicotyledonous species, the herbaceous plant Arabidopsis thaliana, and the tree Populus trichocarpa. Interestingly, the transition of green plants from an aqueous to a dry environment coincides with a dramatic reduction in the diversity of voltage-gated potassium channels followed by a diversification on the basis of one surviving K(+) channel class. The first appearance of K(+) release (K(out)) channels in S. moellendorffii that were shown in Arabidopsis to be involved in xylem loading and guard cell closure coincides with the specialization of vascular plants and may indicate an important adaptive step.

9.
Plant Signal Behav ; 6(4): 558-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21445013

RESUMO

Potassium (K (+) ) is an important nutrient for plants. It serves as a cofactor of various enzymes and as the major inorganic solute maintaining plant cell turgor. In a recent study, an as yet unknown role of K (+) in plant homeostasis was shown. It was demonstrated that K (+) gradients in vascular tissues can serve as an energy source for phloem (re)loading processes and that the voltage-gated K (+) channels of the AKT2-type play a unique role in this process. The AKT2 channel can be converted by phosphorylation of specific serine residues (S210 and S329) into a non-rectifying channel that allows a rapid efflux of K (+) from the sieve element/companion cells (SE/CC) complex. The energy of this flux is used by other transporters for phloem (re)loading processes. Nonetheless, the results do indicate that post-translational modifications at S210 and S329 alone cannot explain AKT2 regulation. Here, we discuss the existence of multiple post-translational modification steps that work in concert to convert AKT2 from an inward-rectifying into a non-rectifying K (+) channel.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Modelos Biológicos , Plantas Geneticamente Modificadas/genética , Canais de Potássio/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...