Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 34(12): 2495-2512, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31820802

RESUMO

STUDY QUESTION: Can kisspeptin treatment induce gonadotrophin responses and ovulation in preclinical models and anovulatory women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER: Kisspeptin administration in some anovulatory preclinical models and women with PCOS can stimulate reproductive hormone secretion and ovulation, albeit with incomplete efficacy. WHAT IS KNOWN ALREADY: PCOS is a prevalent, heterogeneous endocrine disorder, characterized by ovulatory dysfunction, hyperandrogenism and deregulated gonadotrophin secretion, in need of improved therapeutic options. Kisspeptins (encoded by Kiss1) are master regulators of the reproductive axis, acting mainly at GnRH neurons, with kisspeptins being an essential drive for gonadotrophin-driven ovarian follicular maturation and ovulation. Altered Kiss1 expression has been found in rodent models of PCOS, although the eventual pathophysiological role of kisspeptins in PCOS remains unknown. STUDY DESIGN, SIZE, DURATION: Gonadotrophin and ovarian/ovulatory responses to kisspeptin-54 (KP-54) were evaluated in three preclinical models of PCOS, generated by androgen exposures at different developmental windows, and a pilot exploratory cohort of anovulatory women with PCOS. PARTICIPANTS/MATERIALS, SETTING, METHODS: Three models of PCOS were generated by exposure of female rats to androgens at different periods of development: PNA (prenatal androgenization; N = 20), NeNA (neonatal androgenization; N = 20) and PWA (post-weaning androgenization; N = 20). At adulthood (postnatal day 100), rats were subjected to daily treatments with a bolus of KP-54 (100 µg/kg, s.c.) or vehicle for 11 days (N = 10 per model and treatment). On Days 1, 4, 7 and 11, LH and FSH responses were assessed at different time-points within 4 h after KP-54 injection, while ovarian responses, in terms of follicular maturation and ovulation, were measured at the end of the treatment. In addition, hormonal (gonadotrophin, estrogen and inhibin B) and ovulatory responses to repeated KP-54 administration, at doses of 6.4-12.8 nmol/kg, s.c. bd for 21 days, were evaluated in a pilot cohort of anovulatory women (N = 12) diagnosed with PCOS, according to the Rotterdam criteria. MAIN RESULTS AND THE ROLE OF CHANCE: Deregulated reproductive indices were detected in all PCOS models: PNA, NeNA and PWA. Yet, anovulation was observed only in NeNA and PWA rats. However, while anovulatory NeNA rats displayed significant LH and FSH responses to KP-54 (P < 0.05), which rescued ovulation, PWA rats showed blunted LH secretion after repeated KP-54 injection and failed to ovulate. In women with PCOS, KP-54 resulted in a small rise in LH (P < 0.05), with an equivalent elevation in serum estradiol levels (P < 0.05). Two women showed growth of a dominant follicle with subsequent ovulation, one woman displayed follicle growth but not ovulation and desensitization was observed in another patient. No follicular response was detected in the other women. LIMITATIONS, REASONS FOR CAUTION: While three different preclinical PCOS models were used in order to capture the heterogeneity of clinical presentations of the syndrome, it must be noted that rat models recapitulate many but not all the features of this condition. Additionally, our pilot study was intended as proof of principle, and the number of participants is low, but the convergent findings in preclinical and clinical studies reinforce the validity of our conclusions. WIDER IMPLICATIONS OF THE FINDINGS: Our first-in-rodent and -human studies demonstrate that KP-54 administration in anovulatory preclinical models and women with PCOS can stimulate reproductive hormone secretion and ovulation, albeit with incomplete efficacy. As our rat models likely reflect the diversity of PCOS phenotypes, our results argue for the need of personalized management of anovulatory dysfunction in women with PCOS, some of whom may benefit from kisspeptin-based treatments. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by research agreements between Ferring Research Institute and the Universities of Cordoba and Edinburgh. K.S. was supported by the Wellcome Trust Scottish Translational Medicine and Therapeutics Initiative (STMTI). Some of this work was undertaken in the MRC Centre for Reproductive Health which is funded by the MRC Centre grant MR/N022556/1. M.T.-S. is a member of CIBER Fisiopatología de la Obesidad y Nutrición, which is an initiative of Instituto de Salud Carlos III. Dr Mannaerts is an employee of Ferring International PharmaScience Center (Copenhagen, Denmark), and Drs Qi, van Duin and Kohout are employees of the Ferring Research Institute (San Diego, USA). Dr Anderson and Dr Tena-Sempere were recipients of a grant support from the Ferring Research Institute, and Dr Anderson has undertaken consultancy work and received speaker fees outside this study from Merck, IBSA, Roche Diagnostics, NeRRe Therapeutics and Sojournix Inc. Dr Skorupskaite was supported by the Wellcome Trust through the Scottish Translational Medicine and Therapeutics Initiative 102419/Z/13/A. The other authors have no competing interest.


Assuntos
Kisspeptinas/uso terapêutico , Ovulação/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Adulto , Animais , Modelos Animais de Doenças , Feminino , Hormônio Foliculoestimulante/sangue , Humanos , Kisspeptinas/farmacologia , Hormônio Luteinizante/sangue , Projetos Piloto , Síndrome do Ovário Policístico/sangue , Ratos Wistar , Adulto Jovem
2.
Climacteric ; 22(1): 51-54, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30572747

RESUMO

Hot flushes remain a debilitating aspect of menopause, disrupting daytime activities and sleep, and may last for years. Estrogen replacement is an effective treatment, but takes time to become maximally effective and is contraindicated in a significant proportion of women, most notably after breast cancer. Effective, non-hormonal therapies are therefore required. Recent years have seen substantial increases in understanding of the role of novel neuropeptides and tachykinins in hypothalamic function, particularly in the regulation of the reproductive axis through control of gonadotropin releasing hormone secretion, but with links to the control of vasomotor function. Neurokinin B, often co-expressed with kisspeptin in hypothalamic neurons, appears to be a key factor in the control of both systems. Several neurokinin B antagonists have been developed; data are emerging as to their effectiveness in the treatment of menopausal hot flushes. While data remain limited, these agents appear to have a remarkably fast onset of action, with the first 1 or 2 days of administration, and with a dramatic effect on both daytime flushes and night sleep disturbance. If safety and long-term function can be confirmed, these novel agents will be an important advance in therapy.


Assuntos
Gonadotropinas/metabolismo , Fogachos/tratamento farmacológico , Menopausa/efeitos dos fármacos , Neurocinina B/metabolismo , Receptores da Neurocinina-3/antagonistas & inibidores , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/metabolismo , Neurocinina B/antagonistas & inibidores , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores da Neurocinina-3/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...