Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Probiotics Antimicrob Proteins ; 14(6): 1170-1183, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35995909

RESUMO

Milk kefir fermentation has been used in households for generations. Consumption of milk kefir has been associated with various health benefits, presumably from the probiotics of yeast and bacteria that make up the kefir grains. In addition, many of the microbes are known to produce novel antimicrobial compounds that can be used for other applications. The microbes living inside kefir grains differ significantly depending on geographical location and production methods. In this study, we aimed to use metagenomic analysis of fermented milk by using three different kefir grains (kefir 1, kefir 2, and kefir 3) from different US sources. We analyzed the microbial compositions of the three milk fermentation samples. This study revealed that each sample contains unique and distinct groups of microbes, kefir 1 showed the least diversity, and kefir 3 showed the highest diversity. Kefir 3 is rich in Proteobacteria while kefir 2 is dominated by the Firmicutes. Using bacterial indicator growth analyses carried out by continuous readings from microplate-based bioreactor assays suggested that kefir 2 fermentation filtrate has higher antibacterial property. We have screened 30 purified cultures of kefir 2 sample and isolated two lactic acid bacteria strains with higher antibacterial activities; the two strains were identified as Leuconostoc mesenteroides 28-1 and Lentilactobacillus kefiri 25-2 by 16S genomic PCR with confirmed antibacterial activities of fermentation filtrate after growing under both aerobic and anaerobic conditions.


Assuntos
Produtos Fermentados do Leite , Kefir , Lactobacillales , Animais , Kefir/microbiologia , Leite/microbiologia , Produtos Fermentados do Leite/microbiologia , Fermentação , Antibacterianos/farmacologia
2.
J Ind Microbiol Biotechnol ; 46(11): 1547-1556, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31289974

RESUMO

Lactobacillus buchneri and Oenococcus oeni are two unique ethanol-tolerant Gram-positive bacteria species. Genome comparison analyses revealed that L. buchneri and O. oeni possess a pntAB locus that was absent in almost all other lactic acid bacteria (LAB) genomes. Our hypothesis is that the pntAB locus contributes to the ethanol tolerance trait of these two distinct ethanol-tolerant organisms. The pntAB locus, consisting of the pntA and pntB genes, codes for NADP(H) transhydrogenase subunits. This membrane-bound transhydrogenase catalyzes the reduction of NADP+ and is known as an important enzyme in maintaining cellular redox balance. In this study, the transhydrogenase operon from L. buchneri NRRL B-30929 and O. oeni PSU-1 were cloned and analyzed. The LbpntB shared 71.0% identity with the O. oeni (OopntB). The entire pntAB locus was expressed in Lactococcus lactis ssp. lactis IL1403 resulting in an increased tolerance to ethanol (6%), butanol (1.8%) and isopropanol (1.8%) when compared to the control strain. However, the recombinant E. coli cells carrying the entire pntAB locus did not show any improved ethanol tolerance. Independent expression of OopntB and LbpntB in recombinant E. coli BL21(DE3)pLysS host demonstrated higher tolerance to ethanol when compared with a control E. coli BL21(DE3)pLysS strain carrying pET28b vector. Ethanol tolerance comparison of E. coli strains carrying LbpntB and OopntB showed that LbpntB conferred higher ethanol tolerance (4.5%) and resulted in greater biomass, while the OopntB conferred lower ethanol tolerance (4.0%) resulted lower biomass. Therefore, the pntB gene from L. buchneri is a better choice in generating higher ethanol tolerance. This is the first study to uncover the role of pntAB locus on ethanol tolerance.


Assuntos
Etanol/metabolismo , Lactobacillus/metabolismo , NADP Trans-Hidrogenases/metabolismo , Oenococcus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Loci Gênicos , Lactobacillus/genética , NADP Trans-Hidrogenases/genética , Oenococcus/genética
3.
J Ind Microbiol Biotechnol ; 43(4): 441-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26790414

RESUMO

The yajC gene (Lbuc_0921) from Lactobacillus buchneri NRRL B-30929 was identified from previous proteomics analyses in response to ethanol treatment. The YajC protein expression was increased by 15-fold in response to 10 % ethanol vs 0 % ethanol. The yajC gene encodes the smaller subunit of the preprotein translocase complex, which interacts with membrane protein SecD and SecF to coordinate protein transport and secretion across cytoplasmic membrane in Escherichia coli. The YajC protein was linked to sensitivity to growth temperatures in E. coli, involved in translocation of virulence factors during Listeria infection, and stimulating a T cell-mediated response of Brucella abortus. In this study, the L. buchneri yajC gene was over-expressed in E. coli. The strain carrying pET28byajC that produces YajC after isopropyl ß-D-1-thiogalactopyranoside induction showed tolerance to 4 % ethanol in growth media, compared to the control carrying pET28b. This is the first report linking YajC to ethanol stress and tolerance.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Etanol/farmacologia , Lactobacillus/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Bactérias/biossíntese , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Transporte Proteico/efeitos dos fármacos , Canais de Translocação SEC/biossíntese , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Estresse Fisiológico/genética
4.
World J Microbiol Biotechnol ; 32(2): 25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26745985

RESUMO

The production of microbial biomass in liquid media often represents an indispensable step in the research and development of bacterial and fungal strains. Costs of commercially prepared nutrient media or purified media components, however, can represent a significant hurdle to conducting research in locations where obtaining these products is difficult. A less expensive option for providing components essential to microbial growth in liquid culture is the use of extracts of fresh or dried plant products obtained by using hot water extraction techniques. A total of 13 plant extract-based media were prepared from a variety of plant fruits, pods or seeds of plant species including Allium cepa (red onion bulb), Phaseolus vulgaris (green bean pods), and Lens culinaris (lentil seeds). In shake flask tests, cell production by potato dry rot antagonist Pseudomonas fluorescens P22Y05 in plant extract-based media was generally statistically indistinguishable from that in commercially produced tryptic soy broth and nutrient broth as measured by optical density and colony forming units/ml produced (P ≤ 0.05, Fisher's protected LSD). The efficacy of biomass produced in the best plant extract-based media or commercial media was equivalent in reducing Fusarium dry rot by 50-96% compared to controls. In studies using a high-throughput microbioreactor, logarithmic growth of P22Y05 in plant extract-based media initiated in 3-5 h in most cases but specific growth rate and the time of maximum OD varied as did the maximum pH obtained in media. Nutrient analysis of selected media before and after cell growth indicated that nitrogen in the form of NH4 accumulated in culture supernatants, possibly due to unbalanced growth conditions brought on by a scarcity of simple sugars in the media tested. The potential of plant extract-based media to economically produce biomass of microbes active in reducing plant disease is considerable and deserves further research.


Assuntos
Técnicas Bacteriológicas/métodos , Extratos Vegetais/farmacologia , Plantas/química , Pseudomonas fluorescens/crescimento & desenvolvimento , Técnicas Bacteriológicas/economia , Biomassa , Reatores Biológicos , Alimentos , Lens (Planta)/química , Nitrogênio , Cebolas/química , Controle Biológico de Vetores/economia , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Extratos Vegetais/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...