Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 901: 166455, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37607634

RESUMO

The Pinios River Basin (PRB) is the most intensively cultivated area in Greece, which hosts numerous industries and other anthropogenic activities. The analysis of water samples collected monthly for ∼1 ½ years in eight monitoring sites in the PRB revealed nitrate pollution of organic origin extending from upstream to downstream and occurring throughout the year, masking the signal from the application of synthetic fertilizers. Nitrate concentrations reached up to 3.6 mg/l as NO3--N, without exceeding the drinking water threshold of ∼11.0 mg/l (as NO3--N). However, the water quality status was "poor" or "bad" in ∼50 % of the samples based on a local index, which considers the potential impact of nitrate on aquatic biological communities. The δ15Ν-ΝΟ3- and δ18O-NO3- values ranged from +4.4 ‰ to +20.3 ‰ and from -0.5 ‰ to +14.4 ‰, respectively. The application of a Bayesian model showed that the proportional contribution of organic pollution from industries, animal breeding facilities and manure fertilizers exceeded 70 % in most river sites with an overall uncertainty of ∼0.3 (UI90 index). The δ18O-NO3- and its relationship with δ18O-H2O revealed N-cycling and mixing processes, which were difficult to identify apart from the uptake of nutrients by phytoplankton during the growing season and metabolic activities. The strong correlation of δ15Ν-ΝΟ3- values with a Land Use Index (LUI) and a Point Source Index (PSI) highlighted not only the role of non-point nitrate sources but also of point sources of nitrate pollution on water quality degradation, which are usually overlooked. The nitrification of organic wastes is the dominant nitrate source in most rivers in Europe. The systematic monitoring of rivers for nitrate isotopes will help improve the understanding of N-cycling and the impact of these pollutants on ecosystems and better inform policies for protection measures so to achieve good ecological status.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Nitratos/análise , Fertilizantes/análise , Teorema de Bayes , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Poluição da Água/análise , China
2.
Sci Total Environ ; 897: 165361, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419357

RESUMO

We studied the origin of elements of an undisturbed stream basin during the dry season as derived by atmospheric inputs and lithological processes. Α mass balance model was applied taking into account atmospheric (rain and vapor) inputs and their origin from marine aerosol and dust, as well as the contribution of rock mineral weathering and dissolution of soluble salts. The model results were enhanced using element enrichment factors, element ratios and water stable isotopes. Weathering and dissolution of bedrock and soil minerals contributed the main element portions, besides sodium and sulfate that chiefly derived from wet deposition. Vapor was shown to contribute water to inland waters of the basin. However, rain was the main source of elements compared to vapor, with marine aerosol being the only atmospheric chloride source, contributing also over 60 % of atmospheric sodium and magnesium. Silicate derived from mineral weathering (mainly plagioclase and amorphous silica), while soluble salt dissolution contributed the main portions of the rest of major elements. In headwater springs and streams, element concentrations were more affected by atmospheric inputs and silicate mineral weathering was more intense, contrary to lowland waters that were more affected by soluble salt dissolution. Effective self-purification processes were mirrored in low nutrient levels, despite the significant inputs from wet deposition, with rain being more important contributor than vapor for the majority of nutrient species. Relatively high nitrate concentrations in headwaters were attributed to increased mineralization and nitrification, while the downstream nitrate diminishing was due to prevailing denitrification processes. The ultimate goal of this study is to contribute in establishing stream elements' reference conditions using mass balance modeling approaches.

3.
Biology (Basel) ; 12(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36671773

RESUMO

The biodiversity-ecosystem functioning (BEF) relationship has been studied extensively for the past 30 years, mainly in terrestrial plant ecosystems using experimental approaches. Field studies in aquatic systems are scarce, and considering primary producers, they mainly focus on phytoplankton assemblages, whereas benthic diatoms in rivers are considerably understudied in this regard. We performed a field study across nine rivers in Greece, and we coupled the observed field results with model simulations. We tested the hypothesis that the diversity-biomass (as a surrogate of ecosystem functioning) relationship in benthic diatoms would be affected by abiotic factors and would be time-dependent due to the highly dynamic nature of rivers. Indeed, geology played an important role in the form of the BEF relationship that was positive in siliceous and absent in calcareous substrates. Geology was responsible for nutrient concentrations, which, in turn, were responsible for the dominance of specific functional traits. Furthermore, model simulations showed the time dependence of the BEF form, as less mature assemblages tend to present a positive BEF. This was the first large-scale field study on the BEF relationship of benthic diatom assemblages, offering useful insights into the function and diversity of these overlooked ecosystems and assemblages.

4.
Sci Total Environ ; 754: 142344, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254885

RESUMO

There is a worldwide growing use of chemicals by our developed, industrialized, and technological society. More than 100,000 chemical substances are thus commonly used both by industry and households. Depending on the amount produced, physical-chemical properties, and mode of use, many of them may reach the environment and, notably, the aquatic receiving systems. This may result in undesirable and harmful side-effects on both the human and the ecosystem's health. Mediterranean rivers are largely different from Northern and Central European rivers in terms of hydrological regime, climate conditions (e.g. air temperature, solar irradiation, precipitation), and socio-economics (e.g. land use, tourism, crop types, etc.), with all these factors leading to differences in the relative importance of the environmental stressors, in the classes and levels of the pollutants found and their environmental fate. Furthermore, water scarcity might be critical in affecting water pollution because of the lowered dilution capacity of chemicals. This work provides raw chemical data from different families of microcontaminants identified in three selected Mediterranean rivers (the Sava, Evrotas, and Adige) collected during two sampling campaigns conducted in 2014 and 2015 in three different matrices, namely, water, sediments, and biota (fish). More than 200 organic micropollutants were analyzed, including relevant groups like pharmaceuticals, personal care products, perfluorinated compounds, pesticides, pyrethroid insecticides, flame retardants, and persistent organic pollutants. Data obtained were summarized with some basic statistics for all compound families and matrices analyzed. Observed occurrence and spatial patterns were interpreted both in terms of compound physical-chemical properties and local environmental pressures. Finally, their spatial distribution was examined and their ecotoxicological risk in the water phase was assessed. This allowed locating, at each basin, the most polluted sites ("hot spots") and identifying the respective river basin specific pollutants (RBSPs), prioritizing them in terms of the potential ecotoxicological risk posed to the aquatic ecosystems.

5.
Chemosphere ; 263: 128192, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297157

RESUMO

Heavy metal contamination of the aquatic environment is of worldwide concern, due to the toxicity of metals and their lethal effects on aquatic organisms. The investigation of heavy metal concentrations in freshwater bodies has increased over the last decades in Greece; however, most studies have been sporadic and spatially limited. An overall assessment of the heavy metal contamination status in Greek surface water bodies is lacking. In this review, all available published data from 1999 to 2019 were collected and analysed to assess the heavy metal contamination status of the surface water bodies of Greece. Data were available for 68 water bodies and several pollution indices (e.g. Heavy Metal Pollution index, Geoaccumulation index, Moderated Pollution Index) were calculated to evaluate their surface water quality. Overall, heavy metal concentrations in water samples were below the Environmental Quality Standards (EQS) and the vast majority of water bodies were classified as good quality based on surface water pollution indices. Sediment heavy metal concentrations exceeding the Sediment Quality Guidelines (SQGs) were detected in most water bodies. Rivers Axios, Evros, Louros, Gallikos, Greveniotikos, Palea Kavala, Kompsatos, Alfeios and Evrotas, and lakes Pamvotis, Doirani and Koumoundourou were either moderately or highly contaminated. Up to date, heavy metal pollution indices used worldwide for surface waters refer to potable water. Thus, pollution indices must be developed for assessing primarily the ecological consequences of heavy metal pollution and surface water pollution status. Finally, sediment pollution guidelines must be suggested at a European or regional level.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Grécia , Metais Pesados/análise , Medição de Risco , Rios , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 742: 140543, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32721725

RESUMO

Rivers suffer from more severe decreases in species diversity compared to other aquatic and terrestrial ecosystems due to a variety of pressures related to human activities. Species provide different roles in the functioning of the ecosystem, and their loss may reduce the capacity of the ecosystems to respond to multiple stressors. The effects on diversity will differ based on the type, combination and severity of stressors, as well as on the characteristics of the community composition and tolerance. Multiple trait-based approaches (MTBAs) can help to unravel the effects of multiple stressors on communities, providing a mechanistic interpretation, and, thus, complementing traditional biodiversity assessments using community structure. We studied the relationships between diversity indexes and trait composition of macroinvertebrate and diatom communities, as well as environmental variables that described the hydrological and geomorphological alterations and toxic pollution (pesticides and pharmaceuticals) of three different European river basins: the Adige, the Sava, and the Evrotas. These river basins can be considered representative cases of different situations in European freshwater systems. Hydrological variables were the main drivers determining the community structure and function in the rivers, for both diatoms and macroinvertebrates. For diatom communities, pharmaceutical active compound (PhAC) toxic units were also identified as a very important driver of diversity changes, explaining up to 57% of the variance in taxonomic richness. For macroinvertebrates, river geomorphology was an important driver of structural changes, particularly affecting Plecoptera richness. In addition, PhAC and pesticide toxic units were also identified as stressors for macroinvertebrate communities. MTBA provided a detailed picture of the effects of the stressors on the communities and confirmed the importance of hydrological variables in shaping the functional attributes of the communities.


Assuntos
Diatomáceas , Rios , Animais , Biodiversidade , Ecossistema , Monitoramento Ambiental , Invertebrados
7.
Water Res ; 173: 115550, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035279

RESUMO

River restoration with the use of in-stream structures has been widely implemented to maintain/improve physical habitats. However, the response of aquatic biota has often been too weak to justify the high costs of restoration projects. The ecological effectiveness of river restoration has thus been much debated over claims that large-scale environmental drivers often overshadow the potential positive ecological effects of locally placed in-stream structures. In this study, we used a two-dimensional hydrodynamic-habitat model to evaluate the ecological effectiveness of habitat restoration with the use of in-stream structures in various water discharges, ranging from near-dry to environmental flows. The habitat suitability of benthic macroinvertebrates and of three cyprinid fish species was simulated for six restoration schemes and at four discharge scenarios, and was compared with a reference model, without in-stream structures. We found that the ecological response to habitat restoration varied by species and life stages, it strongly depended on the reach-scale flow conditions, it was often negative at near-environmental flows, and when positive, mostly at near-dry flows, it was too low to justify the high costs of river restoration. Flow variation was the major environmental driver that our local habitat restoration schemes attempted -but mostly failed-to fine-tune. We conclude that traditional river restoration, based on trial and error, will likely fail and should be ecologically pre-optimized before field implementation. Widespread use of in-stream structures for ecological restoration is not recommended. However, at near-dry flows, the response of all biotic elements except for macroinvertebrates, was positive. In combination with the small habitat-suitability differences observed among structure types and densities, we suggest that sparse/moderate in-stream structure placement can be used for cost-effective river restoration, but it will only be ecologically effective -thus justifying the high implementation costs-when linked to very specific purposes: (i) to conserve endangered species and (ii) to increase/improve habitat availability/suitability during dry periods, thus proactively preventing/reducing the current and future ecological impacts of climate change.


Assuntos
Monitoramento Ambiental , Rios , Animais , Ecologia , Ecossistema , Peixes
8.
Sci Total Environ ; 703: 135496, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31761368

RESUMO

Benthic macroinvertebrates are often used in ecological quality monitoring. However, due to the large number of samples and specimens, sample processing (sorting/identification) is a labor-intensive task that is susceptible to errors. These errors can consequently lead to biased assessment results. We conducted the first audit of the Greek National Water Monitoring program. Totally, 444 samples were sorted at the laboratory by primary sorters and macroinvertebrate identification was conducted mainly at family level by primary taxonomists, having different taxonomic expertise. The Percentage Sorting Efficiency (PSE), Percentage of Taxonomic Disagreement (PTD), and the Relative Percentage Difference (RPD) were calculated to determine differences between auditing stages. Control charts were used to determine the process changes of the personnel (sorting: PSE index and identification: PTD index) as a calibration check. Additionally, national ecological indices/metrics were calculated to identify how they are affected by errors. All samples except from one had PSE values higher than 90%. The most common overlooked families were Chironomidae, followed by Baetidae and Gammaridae due to their high abundances. Average values of the PTD index for the total number of samples was 5.75% and 1.86% in each phase, respectively. The PTD values decreased between the two phases due to the gained experience of primary taxonomists during the 1st phase. The average action control limit was 95% for the PSE values and 14% for the PTD values. Overall, our ecological quality results indicated that the sorting error was less important than the identification one as the latter may lead to different ecological quality classifications. Our results show that our auditing procedure is effective and increases the quality and accuracy of the sample analysis procedure. It also highlights that human error should not be neglected since it may affect the ecological quality results and especially the good/moderate boundary which leads to rehabilitation measures.


Assuntos
Monitoramento Ambiental/métodos , Invertebrados , Poluentes Químicos da Água/análise , Animais , Água Doce , Controle de Qualidade , Projetos de Pesquisa
9.
Environ Pollut ; 254(Pt B): 113057, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31454578

RESUMO

Olive mill wastewaters (OMW) discharging in river ecosystems cause significant adverse effects on their water chemistry and biological communities. We here examined the effects of OMW loads in four streams of a Mediterranean basin characterized by changing flow. The diatom and macroinvertebrate community structures were compared between upstream (control) and downstream (impacted) sites receiving OMW discharge. We also tested if effects occurred at the organism level, i.e. the occurrence of deformities in diatom valves, and the sediment toxicity on the midge Chironomus riparius. We evaluated these effects through a two-year analysis, at various levels of chemical pollution and dilution capacity. The impacted sites had high phenol concentrations and organic carbon loads during and after olive mill (OM) operation, and were characterized by higher abundances of pollution-tolerant diatom and macroinvertebrate taxa. Diatom valve deformities occurred more frequently at the impacted sites. The development of C. riparius was affected by phenolic compounds and organic carbon concentrations in the sediments. The similarity in the diatom and macroinvertebrate assemblages between control and impacted sites decreased at lower flows. Diatoms were more sensitive in detecting deterioration in the biological status of OMW receiving waterways than macroinvertebrates. Our results indicate that the negative effects of OMW extended to the whole benthic community, at both assemblage and organism level.


Assuntos
Monitoramento Ambiental , Olea , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Biota , Diatomáceas , Ecossistema , Fenol/análise , Rios/química , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
10.
Ecotoxicol Environ Saf ; 175: 48-57, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884344

RESUMO

Olive oil production generates large volumes of wastewaters mostly in peri-Mediterranean countries with adverse impacts on the biota of the receiving aquatic systems. Few studies have however documented its toxicity on aquatic species, with an almost total lack of relative studies on fish. We assessed the acute and sub-chronic OMW toxicity, as well as the acute and sub-chronic behavioural, morphological and biochemical effects of OMW exposure on the mosquitofish Gambusia holbrooki. LC50 values of the acute bioassays ranged from 7.31% (24 h) to 6.38% (96 h). Behavioural symptoms of toxicity included hypoactivity and a shift away from the water surface, coupled with a range of morphological alterations, such as skin damage, excessive mucus secretion, hemorrhages, fin rot and exophhalmia, with indications also of gill swelling and anemia. Biochemical assays showed that OMW toxicity resulted in induction of catalase (CAT) and inhibition of acetylcholinesterase (AChE) activities. The implications of our results at the level of environmental policy for the sustainable management of the olive mill industry, i.e. the effective restriction of untreated OMW disposal of in adjacent waterways, as well as the implementation of new technologies that reduce their impact (detoxification and/or revalorization of its residues) are discussed.


Assuntos
Ciprinodontiformes/crescimento & desenvolvimento , Resíduos Industriais/análise , Olea , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Bioensaio , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
11.
Sci Total Environ ; 665: 290-299, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772559

RESUMO

The environmental factors that determine species richness and community structure in running waters have long been studied, but how these factors hierarchically and/or interactively influence benthic communities remains unclear. To address this research gap, we identified the principal abiotic factors that determine the taxonomic composition and functionality of stream macroinvertebrate communities and explored possible hierarchical and/or interactive patterns. We analyzed a large dataset from Greek rivers, and compared multiple macroinvertebrate metrics and traits between perennial and intermittent watercourses during wet and dry periods. We found that macroinvertebrates were primarily influenced by two ecological gradients: (i) aquatic vegetation-conductivity; and (ii) water temperature-canopy cover. Macroinvertebrates in perennial rivers were mainly influenced by the first gradient, whereas in intermittent rivers both gradients were important. Taxonomic richness and diversity were higher and temporally stable within years in perennial rivers, whereas in intermittent rivers, these metrics peaked during early summer, before the onset of streambed desiccation. The two environmental gradients determined the taxonomic richness and diversity in both spring and summer; however, a clear influence of hydrological factors (wetted width, water depth, flow velocity and discharge) was observed only in the intermittent samples. We conclude that the benthic invertebrate taxonomic richness and diversity in highly variable environments is primarily determined by hydrological variation and ultimately fine-tuned by local habitat factors. As climate change scenarios predict severe modification of hydrological and local habitat factors, this study concludes that in river management, hydrological restoration should be prioritized over other local habitat factors by maintaining natural hydrological variability, to ensure aquatic community richness and diversity.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Monitoramento Ambiental , Invertebrados/fisiologia , Animais , Rios
12.
Sci Total Environ ; 660: 1623-1632, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743953

RESUMO

The Mediterranean region is anticipated to be (or, already is) one of the hot spots for climate change, where freshwater ecosystems are under threat from the effects of multiple stressors. Climate change is impacting natural resources and on the functioning of Ecosystem Services. The challenges about modelling climate change impact on water cycle in general and specifically on socio-economic dynamics of the society leads to an exponential amount of results that restrain interpretation and added value of forecasting at local level. One of the main challenges when dealing with climate change projections is the quantification of uncertainties. Modellers might have limited information or understanding from local river catchment management practices and from other disciplines with relevant insights on socio-economic and environmental complex relationship between biosphere and human based activities. Current General Circulation Models cannot fulfil the requirements of high spatial detail required for water management policy. This article reports an innovative transdisciplinary methodology to down scale Climate Change scenarii to river basin level with a special focus on the development of climate change narrative under SSP5-RCP8.5 combination called Myopic scenario and SSP1-RCP4.5 combination called Sustainable scenario. Local Stakeholder participative workshop in the Evrotas river basin provide perception of expected changes on water demand under to two developed scenario narratives.

13.
Sci Total Environ ; 647: 1179-1187, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180326

RESUMO

The hydrological and biological complexity of temporary rivers as well as their importance in providing goods and services is increasingly recognized, as much as it is the vulnerability of the biotic communities in view of climate change and increased anthropogenic pressures. However, the effects of flow intermittency (resulting from both seasonal variations and rising hydrological pressure) and pollution on biodiversity and ecosystem functioning have been overlooked in these ecosystems. We explore the way multiple stressors affect biodiversity and ecosystem functioning, as well as the biodiversity-ecosystem functioning (B-EF) relationship in a Mediterranean temporary river. We measured diversity of benthic communities (i.e. diatoms and macroinvertebrates) and related ecosystem processes (i.e. resource use efficiency-RUE and organic matter breakdown-OMB) across a pollution and flow intermittency gradient. Our results showed decreases in macroinvertebrate diversity and the opposite trend in diatom assemblages, whereas ecosystem functioning was negatively affected by both pollution and flow intermittency. The explored B-EF relationships showed contrasting results: RUE decreased with higher diatom diversity, whereas OMB increased with increased macroinvertebrate diversity. The different responses suggest contrasting operating mechanisms, selection effects possibly driving the B-EF relationship in diatoms and complementarity effects driving the B-EF relationship in macroinvertebrates. The understanding of multiple stressor effects on diversity and ecosystem functioning, as well as the B-EF relationship in temporary rivers could provide insights on the risks affecting ecosystem functioning under global change.


Assuntos
Biodiversidade , Ecossistema , Monitoramento Ambiental , Animais , Invertebrados , Região do Mediterrâneo , Rios/química
14.
Sci Total Environ ; 647: 561-569, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30089278

RESUMO

The contamination patterns and fate of pharmaceutically active compounds (PhACs) were investigated in the Evrotas River (Southern Greece). This is a temporary river with differing levels of water stress and water quality impairment in a number of its reaches. Three sampling campaigns were conducted in order to capture different levels of water stress and water quality. Four sampling sites located on the main channel of the Evrotas River were sampled in July 2015 (moderate stream flow), and June and September 2016 (low stream flow). Discharge of urban wastewater has been determined as the main source of pollution, with PhACs, nutrients and other physicochemical parameters considerably increasing downstream the wastewater treatment plant (WWTP) of Sparta city. Due to the pronounced hydrological variation of the Evrotas River, generally, the highest concentrations of PhACs have been detected during low flow conditions. Simultaneously, low flow resulted in an increased water travel time and consequently longer residence time that accounted for the higher attenuation of most PhACs. The average decrease in total concentration of PhACs within the studied waterbody segment (downstream of Sparta city) increased from 22% in July 2015 to 25% in June 2016 and 77% in September 2016. The PhACs with the highest average concentration decrease throughout the sampling campaigns were hydrochlorothiazide, followed by sotalol, carbamazepine, valsartan, and naproxen.


Assuntos
Monitoramento Ambiental , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Cidades , Grécia , Rios/química , Águas Residuárias
15.
Sci Total Environ ; 647: 645-652, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30092520

RESUMO

Transport of hydrophobic pollutants in rivers such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals is often facilitated by suspended sediment particles, which are typically mobilized during high discharge events. Suspended sediments thus represent a means of transport for particle related pollutants within river reaches and may represent a suitable proxy for average pollutant concentrations estimation in a river reach or catchment. In this study, multiple high discharge/turbidity events were sampled at high temporal resolution in the Globaqua River Basins Sava (Slovenia, Serbia), Adige (Italy), and Evrotas (Greece) and analysed for persistent organic pollutants such as PAHs (polycyclic aromatic hydrocarbons) or PCBs (polychlorinated biphenyls) and heavy metals. For comparison, river bed sediment samples were analysed as well. Further, results are compared to previous studies in contrasting catchments in Germany, Iran, Spain, and beyond. Overall results show that loadings of suspended sediments with pollutants are catchment-specific and relatively stable over time at a given location. For PAHs, loadings on suspended particles mainly correlate to urban pressures (potentially diluted by sediment mass fluxes) in the rivers, whereas metal concentrations mainly display a geogenic origin. By cross-comparison with known urban pressure/sediment yield relationships (e.g. for PAHs) or soil background values (for metals) anthropogenic impact - e.g. caused by industrial activities - may be identified. Sampling of suspended sediments gives much more reliable results compared to sediment grab samples which typically show a more heterogeneous contaminant distribution. Based on mean annual suspended sediment concentrations and distribution coefficients of pollutants the fraction of particle facilitated transport versus dissolved fluxes can be calculated.

16.
Sci Total Environ ; 648: 1087-1096, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340255

RESUMO

Among different stressors like drought, hydro-morphological alterations, and pollution from agricultural activities, nutrients, organic compounds and discharges from wastewater treatment plants (WWTPs), potentially toxic elements (PTE) may also contribute to the overall pollution of the Evrotas River, Greece. Nevertheless, information on pollution of elements in water and sediments in this river is scarcely documented. There is also no information available on the impact of elemental pollution from the aquatic environmental compartments on biota. To fill these gaps, in this study, water, sediment and fish samples were collected from four sampling sites along the Evrotas River under variable flow regimes (July 2015, higher discharge; June 2016, low discharge and September 2016, minimum discharge). Total and dissolved element concentrations in water samples, total and acetic acid extractable contents in sediments, and element concentrations in fish samples were determined by inductively coupled plasma mass spectrometry and significant relationships between samples were established using correlation analysis. The concentrations of PTE (Ni, Cr, Cd, As, Pb, Zn and Cu) in water were generally low, while elevated Ni and Cr contents were found in sediments (up to 150 and 300 mg/kg, respectively), with total Cr concentration in water and sediment being positively correlated. The ecological risk posed by the simultaneous presence of PTE in sediments evaluated by calculating the Probable Effect Concentration Coefficient (PEC-Q), demonstrated that PEC-Qs, which were above the critical value of 0.34, derived mostly from Cr and Ni inputs. Since their mobile sediment fraction was extremely low, Cr and Ni origin is most probably geogenic. The analysis of elements in the target fish species, the Evrotas chub, showed low to moderate PTE concentrations, with Pb being positively correlated with total Pb concentration in water. Moderate Zn concentrations found in fish samples from the Evrotas are possibly derived from pesticides and fertilizers.


Assuntos
Exposição Ambiental , Peixes , Sedimentos Geológicos/análise , Rios/química , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Grécia , Modelos Teóricos , Medição de Risco , Movimentos da Água
17.
Sci Total Environ ; 651(Pt 2): 3079-3089, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463158

RESUMO

Twenty-six common ingredients of personal care products (PCPs) in water, sediment and fish from the Evrotas River (Greece) were investigated. Water sample analysis revealed the occurrence of twenty PCPs at concentrations ranging from 2.8 to 2031.0 ng l-1, the maximum corresponding to the endocrine disrupting UV filter benzophenone 3 (BP3). In sediment samples, six compounds were found to be adsorbed, the highest concentration being that of 4-methylbenzylidene camphor (4MBC, 1400.4 ng g-1 dw). Evrotas cyprinid fish (Squalius keadicus) showed a high accumulation potential for these chemicals, 100% detection frequency with maximum concentration that of benzophenone 2 (BP2, 41.9 ng g-1 dw). These data allowed estimating the distribution coefficients sediment-water (DCs-w) and the bioaccumulation factors (BAFs) of the pollutants investigated. Calculated rates revealed that benzophenone 1 (BP1), 4-hydroxybenzophenone (4HB) and ethyl-4-(dimethyl-amino)benzoate (EtPABA) have a strong tendency to adsorb onto the sediments, showing high DCs-w, i.e. 8.2E + 4 l g-1, 6.7E + 4 l g-1 and 5.7E + 3 l g-1, respectively. BFAs were only estimated for 5-methyl benzotriazole (MeBT), the compound having paired data from fish and water. The obtained values (range 2.0E + 2 l g-1-3.8E + 3 l g-1), indicated MeBT's strong bioaccumulation. Risk assessment of the investigated compounds for several aquatic organisms indicated a high ecological risk (HQ > 1) for BP3 and medium ecological risk (HQ ~ 0.5) for ODPABA.


Assuntos
Cosméticos/análise , Monitoramento Ambiental , Peixes/metabolismo , Poluentes Químicos da Água/análise , Animais , Sedimentos Geológicos/análise , Grécia , Rios/química , Protetores Solares/análise
18.
Sci Total Environ ; 615: 1028-1047, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751407

RESUMO

Sustainable water basin management requires characterization of flow regime in river networks impacted by anthropogenic pressures. Flow regime in ungauged catchments under current, future, or natural conditions can be assessed with hydrological models. Developing hydrological models is, however, resource demanding such that decision makers might revert to models that have been developed for other purposes and are made available to them ('off-the-shelf' models). In this study, the impact of epistemic uncertainty of flow regime indicators on flow-ecological assessment was assessed at selected stations with drainage areas ranging from about 400 to almost 90,000km2 in four South European basins (Adige, Ebro, Evrotas and Sava). For each basin, at least two models were employed. Models differed in structure, data input, spatio-temporal resolution, and calibration strategy, reflecting the variety of conditions and purposes for which they were initially developed. The uncertainty of modelled flow regime was assessed by comparing the modelled hydrologic indicators of magnitude, timing, duration, frequency and rate of change to those obtained from observed flow. The results showed that modelled flow magnitude indicators at medium and high flows were generally reliable, whereas indicators for flow timing, duration, and rate of change were affected by large uncertainties, with correlation coefficients mostly below 0.50. These findings mirror uncertainty in flow regime indicators assessed with other methods, including from measured streamflow. The large indicator uncertainty may significantly affect assessment of ecological status in freshwater systems, particularly in ungauged catchments. Finally, flow-ecological assessments proved very sensitive to reference flow regime (i.e., without anthropogenic pressures). Model simulations could not adequately capture flow regime in the reference sites comprised in this study. The lack of reliable reference conditions may seriously hamper flow-ecological assessments. This study shows the pressing need for improving assessment of natural flow regime at pan-European scale.

19.
Sci Total Environ ; 618: 1591-1604, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054662

RESUMO

Temporary rivers are dynamic and complex ecosystems that are widespread in arid and semi-arid regions, such as the Mediterranean. Biotic communities adapted in their intermittent nature could withstand recurrent drought events. However, anthropogenic disturbances in the form of water stress and chemical pollution challenge biota with unpredictable outcomes, especially in view of climate change. In this study we assess the response of the biotic community of a temporary river to environmental stressors, focusing on water stress and pollution. Towards this aim, several metrics of four biotic groups (diatoms, macrophytes, macroinvertebrates and fish) were applied. All biotic groups responded to a pollution gradient mainly driven by land use, distinct functional groups of all biota responded to water stress (a response related to the rheophilic nature of the species and their resistance to shear stress), while the combined effects of water stress and pollution were apparent in fish. Biotic groups presented a differential temporal response to water stress, where diatom temporal assemblage patterns were explained by water stress variables of short-time response (15days), while the responses of the other biota were associated to longer time periods. There were two time periods of fish response, a short (15days) and a long-time response (60-75days). When considering management decisions, our results indicate that, given the known response of river biota to pollution, biomonitoring of temporary rivers should also involve metrics that can be utilized as early warnings of water stress.


Assuntos
Organismos Aquáticos/fisiologia , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Animais , Mudança Climática , Diatomáceas/fisiologia , Ecossistema , Peixes/fisiologia , Invertebrados/fisiologia , Rios , Poluentes Químicos da Água/toxicidade , Poluição da Água
20.
Sci Total Environ ; 603-604: 639-650, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28667932

RESUMO

Water stress is a key stressor in Mediterranean intermittent rivers exacerbating the negative effects of other stressors, such as pollutants, with multiple effects on different river biota. The current study aimed to determine the response of macroinvertebrate and fish assemblages to instream habitat and water chemistry, at the microhabitat scale and at different levels of water stress and pollution, in an intermittent Mediterranean river. Sampling was conducted at high and low summer discharge, at two consecutive years, and included four reaches that were targeted for their different levels of water stress and pollution. Overall, the macroinvertebrate fauna of Evrotas River indicated high resilience to intermittency, however, variation in community structure and composition occurred under acute water stress, due to habitat alteration and change in water physico-chemistry, i.e. water temperature increase. The combined effects of pollution and high water stress had, however, pronounced effects on species richness, abundance and community structure in the pollution impacted reach, where pollution sensitive taxa were almost extirpated. Fish response to drought, in reaches free of pollution, consisted of an increase in the abundance of the two small limnophilic species, coupled with their shift to faster flowing riffle habitats, and a reduction in the abundance of the larger, rheophilic species. In the pollution impacted reach, however, the combination of pollution and high water stress led to hypoxic conditions assumed to be the leading cause of the almost complete elimination of the fish assemblage. In contrast, the perennial Evrotas reaches with relatively stable physicochemical conditions, though affected hydrologically by drought, appear to function as refugia for fish during high water stress. When comparing the response of the two biotic groups to combined acute water stress and pollution, it is evident that macroinvertebrates were negatively impacted, but fish were virtually eliminated under the two combined stressors.


Assuntos
Monitoramento Ambiental , Peixes , Invertebrados , Rios/química , Poluição da Água/efeitos adversos , Animais , Ecossistema , Grécia , Estresse Fisiológico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...