Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathophysiology ; 26(3-4): 203-212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30850244

RESUMO

In this study, the effects of low-level, GSM emitted ElectroMagnetic Field (EMF) on Amyloid Precursor Protein (APP) and alpha-synuclein (α-syn) in human neuroblastoma cells was investigated. Our data indicated alterations on APP processing and cellular topology, following EMF exposure (ℇ = 10.51 V/m, SAR = 0.23 W/kg, exposure time: 3 times, for 10 min, for 2 days). Furthermore, changes in monomeric α-syn accumulation and multimerization, as well as induction of oxidative stress and cell death, were documented. The results presented here require further investigation to determine potential links of EMF with the molecular pathogenic mechanisms in Alzheimer's and Parkinson's Diseases.

2.
Fly (Austin) ; 11(2): 75-95, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-27960592

RESUMO

The daily use by people of wireless communication devices has increased exponentially in the last decade, begetting concerns regarding its potential health hazards. Drosophila melanogaster four days-old adult female flies were exposed for 30 min to radiation emitted by a commercial mobile phone at a SAR of 0.15 W/kg and a SAE of 270 J/kg. ROS levels and apoptotic follicles were assayed in parallel with a genome-wide microarrays analysis. ROS cellular contents were found to increase by 1.6-fold (x), immediately after the end of exposure, in follicles of pre-choriogenic stages (germarium - stage 10), while sporadically generated apoptotic follicles (germarium 2b and stages 7-9) presented with an averaged 2x upregulation in their sub-population mass, 4 h after fly's irradiation with mobile device. Microarray analysis revealed 168 genes being differentially expressed, 2 h post-exposure, in response to radiofrequency (RF) electromagnetic field-radiation exposure (≥1.25x, P < 0.05) and associated with multiple and critical biological processes, such as basic metabolism and cellular subroutines related to stress response and apoptotic death. Exposure of adult flies to mobile-phone radiation for 30 min has an immediate impact on ROS production in animal's ovary, which seems to cause a global, systemic and non-targeted transcriptional reprogramming of gene expression, 2 h post-exposure, being finally followed by induction of apoptosis 4 h after the end of exposure. Conclusively, this unique type of pulsed radiation, mainly being derived from daily used mobile phones, seems capable of mobilizing critical cytopathic mechanisms, and altering fundamental genetic programs and networks in D. melanogaster.


Assuntos
Telefone Celular , Drosophila melanogaster/efeitos da radiação , Animais , Apoptose , Feminino , Expressão Gênica/efeitos da radiação , Oogênese/efeitos da radiação , Ovário/metabolismo , Ovário/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
3.
Electromagn Biol Med ; 35(1): 40-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25333897

RESUMO

Present generations are being repeatedly exposed to different types and doses of non-ionizing radiation (NIR) from wireless technologies (FM radio, TETRA and TV stations, GSM and UMTS phones/base stations, Wi-Fi networks, DECT phones). Although there is controversy on the published data regarding the non-thermal effects of NIR, studies have convincingly demonstrated bioeffects. Their results indicate that modulation, intensity, exposure duration and model system are important factors determining the biological response to irradiation. Attempting to address the dependence of NIR bioeffectiveness on these factors, apoptosis in the model biological system Drosophila melanogaster was studied under different exposure protocols. A signal generator was used operating alternatively under Continuous Wave (CW) or Frequency Modulation (FM) emission modes, at three power output values (10 dB, 0, -10 dB), under four carrier frequencies (100, 395, 682, 900 MHz). Newly emerged flies were exposed either acutely (6 min or 60 min on the 6th day), or repeatedly (6 min or 60 min daily for the first 6 days of their life). All exposure protocols resulted in an increase of apoptotic cell death (ACD) observed in egg chambers, even at very low electric field strengths. FM waves seem to have a stronger effect in ACD than continuous waves. Regarding intensity and temporal exposure pattern, EMF-biological tissue interaction is not linear in response. Intensity threshold for the induction of biological effects depends on frequency, modulation and temporal exposure pattern with unknown so far mechanisms. Given this complexity, translating such experimental data into possible human exposure guidelines is yet arbitrary.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/efeitos da radiação , Radiação Eletromagnética , Oogênese/efeitos da radiação , Animais , Apoptose/efeitos da radiação , Relação Dose-Resposta à Radiação , Drosophila melanogaster/fisiologia , Fatores de Tempo , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...