Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New For (Dordr) ; 49(5): 599-611, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147210

RESUMO

Reclamation of surface mined sites to forests is a preferred post-mining land use option, but performance of planted trees on such sites is variable. American chestnut (Castanea dentata (Marsh.) Borkh.) is a threatened forest tree in the eastern USA that may become an important species option for mine reclamation. Chestnut restoration using backcross hybrids that incorporate blight resistance may be targeted to the Appalachian coal mining region, which corresponds closely with the species' native range. Thus, it is important to understand how chestnut hybrids perform relative to progenitors on reclamation sites to develop restoration prescriptions. Seeds of parents and three backcross generations of chestnut (100% American, 100% Chinese, and BC1F3, BC2F3, and BC3F2 hybrids) were planted into mine soils in West Virginia, USA with shelter treatments. Survival for all stock types was 44% after 8 years (American 39%, Chinese 77%, BC1F3 40%, BC2F3 28%, and BC3F2 35%). Height for all stock types was 33 cm after 8 years (American 28 cm, Chinese 67 cm, BC1F3 30 cm, BC2F3 21 cm, and BC3F2 20 cm). At another site a year later, seedlings of the chestnut stock types were planted into brown (pH 4.6) or gray sandstone (pH 6.3) mine soils and seedling survival across all stock types was 58% after 7 years. Chinese had the highest survival at 82%, while the others ranged from 38 to 66%. Height was 63 cm for all stock types after 7 years. More advanced backcross hybrids (BC2F3 and BC3F2) had the lowest vigor ratings at both sites after 7-8 years. Our results indicate that surface mines in Appalachia may provide a land base for planting blight-resistant chestnuts, although Chinese chestnut outperformed American chestnut and later generation backcross hybrids. As blight-resistant chestnuts establish and spread after planting, chestnut trees may become a component of the forest canopy again and possibly occupy its former niche, but their spread may alter future forest stand dynamics.

2.
Sci Total Environ ; 481: 418-24, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24631603

RESUMO

Surface mining in Appalachia disrupts large areas of forested land. Federal and state laws require disturbed lands be reclaimed by re-constructing the landscape and replacing soil materials to provide a rooting medium. If insufficient quantities of native topsoil are available, substitute materials derived from the overburden may be used as soil media. This study examined soil and foliar nutrient concentrations of three hardwood tree species on areas where brown and gray sandstone overburden were applied as substitute growth media at the Birch River mine in West Virginia. Soil and foliar nutrient concentrations found in four experimental plots were compared to soil and foliar nutrient concentrations found in a nearby native Appalachian forest. Many foliar nutrients such as phosphorus and potassium were lower in all three tree species on most mine soils compared to trees growing in nearby native forest soils and to tree nutrient concentrations from the literature. Foliar and soil nutrient concentrations in the Brown mine soil were similar to those found in native forest soil, while the Gray mine soil provided significantly lower levels of nutrients. Overall, low nutrient availability in mine soils translates into generally lower foliar nutrient concentrations in trees growing on mine soils. After six years, amended topsoil substitutes and Brown mine soil produced higher foliar nutrient concentrations than Gray mine soil.


Assuntos
Mineração , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/química , Árvores/fisiologia , Região dos Apalaches , Biodegradação Ambiental , Solo/química , West Virginia
3.
J Environ Qual ; 42(5): 1363-71, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24216414

RESUMO

Each year surface mining in Appalachia disrupts large areas of forested land. The Surface Mining Control and Reclamation Act requires coal mine operators to establish a permanent vegetative cover after mining, and current practice emphasizes soil compaction and planting of competitive forage grasses to stabilize the site and control erosion. These practices hinder recolonization of native hardwood trees on these reclaimed sites. Recently reclamation scientists and regulators have encouraged re-establishment of hardwood forests on surface mined land through careful selection and placement of rooting media and proper selection and planting of herbaceous and tree species. To evaluate the effect of rooting media and soil amendments, a 2.8-ha experimental plot was established, with half of the plot being constructed of weathered brown sandstone and half constructed of unweathered gray sandstone. Bark mulch was applied to an area covering both sandstone types, and the ends of the plot were hydroseeded with a tree-compatible herbaceous seed mix, resulting in eight soil treatments. Twelve hardwood tree species were planted, and soil chemical properties and tree growth were measured annually from 2007 to 2012. After six growing seasons, average tree volume index was higher for trees grown on brown sandstone (5333 cm) compared with gray sandstone (3031 cm). Trees planted in mulch outperformed trees on nonmulched treatments (volume index of 6187 cm vs. 4194 cm). Hydroseeding with a tree-compatible mix produced greater ground cover (35 vs. 15%) and resulted in greater tree volume index than nonhydroseed areas (5809 vs. 3403 cm). Soil chemical properties were improved by mulch and improved tree growth, especially on gray sandstone. The average pH of brown sandstone was 5.0 to 5.4, and gray sandstone averaged pH 6.9 to 7.7. The mulch treatment on gray sandstone resulted in tree growth similar to brown sandstone alone and with mulch. After 6 yr, tree growth on brown sandstone was about double the tree growth on gray sandstone, and mulch was a successful amendment to improve tree growth.


Assuntos
Solo , Árvores , Mineração , Poaceae , West Virginia
4.
J Environ Qual ; 42(3): 696-703, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673936

RESUMO

The high cost of transportation fuels and the environmental risks associated with acquiring and using nonrenewable energy sources have created a demand for developing renewable bioenergy crops. Switchgrass ( L.), a warm-season perennial grass, is a promising feedstock due to its high biomass production under a wide range of growing conditions and its satisfactory forage quality and chemical composition. West Virginia contains vast expanses of reclaimed surface mine lands that could be used to produce switchgrass as a bioenergy feedstock. This study determined dry matter yields of three switchgrass varieties (Cave-In-Rock, Shawnee, and Carthage) during the second to fourth years of production. Two research sites were established on reclaimed surface mines in southern West Virginia: Hobet and Hampshire. The Hobet site was prepared using crushed, unweathered sandstone as the soil material, and yields were significantly lower at 803 kg ha averaged across varieties and years than annual yields at Hampshire. The highest yield at Hobet, with Shawnee in the third year, was 1964 kg ha. The Hamphire site, which was reclaimed in the late 1990s using topsoil and treated municipal sludge, averaged 5760 kg ha of switchgrass across varieties and years. The highest yield, obtained with Cave-in-Rock during the third year, was 9222 kg ha. Switchgrass yields on agricultural lands in this region averaged 12,000 kg ha. Although average switchgrass yields at Hampshire were about 50% lower than agricultural lands, they were greater than a target yield of 5000 kg ha, a threshold for economically feasible production. Yields during the fourth year from a two-harvest per year system were not significantly different from a single, end-of-year harvest at both sites. Reclaimed lands show promise for growing bioenergy crops such as switchgrass on areas where topsoil materials are replaced and amended like that at the Hampshire site.


Assuntos
Mineração , Panicum , Biomassa , Produtos Agrícolas , Poaceae , Solo
5.
Bull Environ Contam Toxicol ; 84(4): 459-64, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20352186

RESUMO

Soil incubation and germination tests were conducted to assess zerovalent iron (ZVI), organic compost, moisture and their combinations on metolachlor degradation in soil. The ZVI alone degraded 91% of metolachlor in soil within 40 days following bi-phasic kinetics. Organic amendment alone facilitated metolachlor degradation in soil up to 60% after 40 days depending on the amendment rate. However, the combination of ZVI with compost amendment at 30 ton ha(-1) and 30% moisture content accelerated metolachlor degradation to 90% after 3 days and 98% after 40 days. The half life (t (1/2)) of metolachlor degradation with ZVI, compost at 30 ton ha(-1), and 30% moisture was about 1 day, which was faster than ZVI treatment alone and 98% faster than controls. Germination and growth of lettuce (Lactuca sativa) and crabgrass (Digitaria sanguinalis L. Scop.) were severely inhibited in unamended metolachlor-contaminated soils but when these soils were amended with ZVI, germination and growth was comparable to controls (metolachlor free soil). Metolachlor degradation was greatest when ZVI, compost and moisture were used together, suggesting that these treatments will maximize in situ remediation of metolachlor-contaminated soils in the field.


Assuntos
Acetamidas/metabolismo , Recuperação e Remediação Ambiental/métodos , Herbicidas/metabolismo , Poluentes do Solo/metabolismo , Solo/análise , Digitaria/metabolismo , Germinação , Ferro/metabolismo , Lactuca/metabolismo , Poluentes do Solo/análise
6.
J Environ Qual ; 38(4): 1400-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19465715

RESUMO

Current West Virginia coal mining regulations emphasize reforestation as a preferred postmining land use on surface mined areas. Some mined sites reclaimed to pasture are being converted to forests. In the spring of 2001, we compared the establishment and growth of five hardwood tree species on a reclaimed West Virginaia surface mine with compacted soils and a heavy grass groundcover. We planted 1-yr-old seedlings of five species (black cherry [Prunus serotina Ehrh.], red oak [Quercus rubra L.], yellow poplar [Liriodendron tulipifera L.], black walnut [Juglans nigra L.], and white ash [Fraxinus americana L.]) into sites that were mowed and unmowed on north- and south-facing aspects. We applied a ripping treatment, which loosened the compacted soils and disturbed the heavy ground cover. First year results showed >80% survival for all species. After 7 yr black cherry survival averaged 36%, red oak 47%, yellow poplar 66%, black walnut 80%, and white ash 98% across all sites and treatments. Seedling survival was best on north, unmowed, and ripped areas. Average growth (height x diameter(2)) of trees after 7 yr was greatest with white ash (434 cm(3)), followed by yellow poplar (256 cm(3)) and black walnut (138 cm(3)), then by black cherry (31 cm(3)) and red oak (27 cm(3)). Browsing by wildlife had a negative impact on tree growth especially on south aspect sites. Overall, mowing reduced survival of black cherry, red oak, and yellow poplar, but not for black walnut and white ash. Ripping increased survival of black cherry, red oak, and yellow poplar. Growth of all species was improved with ripping. Using inverse linear-quadratic plateau models, the time required for tree survival to stabilize varied from 1 yr for white ash to 6 to 9 yr for the other species.


Assuntos
Árvores , Solo , Especificidade da Espécie , West Virginia
7.
J Environ Qual ; 32(2): 654-61, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12708690

RESUMO

The Deckers Creek watershed in northern West Virginia (USA), containing a land area of 166 km2 (63 mi2), has a long history of industrial development and attendant environmental abuses from both land and water pollution practices. The water in Deckers Creek was sampled in 1974 at 29 locations along the main stem and resampled in 1999-2000 to determine water quality changes over this 25-year period. Water samples were analyzed for pH, acidity, alkalinity, iron, and calcium at both times, while aluminum, manganese, zinc, and fecal coliform (FC) bacteria densities were added in 1999-2000. Water at almost all sampling points showed lower acidity and metal contents in 1999-2000 compared with 1974. Water pH increased at the mouth from 5.4 in 1974 to 6.0 in 1999-2000. Acidity and iron concentrations were decreased an average of 70% in the upper stretches of the creek. However, one major untreated point source of water from an abandoned underground mining complex continues to degrade the quality of the creek in its lower stretches. In the upper section, the water quality in Deckers Creek has improved due to decreased surface and underground coal mining activities, reclamation of abandoned and recently permitted surface mined lands, and natural healing of past land use scars from timbering and mining over time. The decrease in mineral extraction activities and the reclamation of disturbed lands has occurred due to the passage and enforcement of water quality and land reclamation laws and regulations. More time and additional reclamation projects will continue to enhance the water quality in the creek. Improved water chemistry in the majority of the creek, however, shows the previously unnoticeable biological contamination from sewage inputs.


Assuntos
Metais Pesados/análise , Mineração , Poluentes da Água/história , Monitoramento Ambiental , História do Século XX , Concentração de Íons de Hidrogênio , Mineração/história , Esgotos , Microbiologia da Água , Poluentes da Água/análise , West Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...