Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 154: 1-11, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29117574

RESUMO

Available evidence suggests that the magnitude of the foreign body response (FBR) to implants placed in cortical brain tissue is affected by the extent of vasculature damage following device insertion and the magnitude of the ensuing macrophage response. Since the extracellular matrix (ECM) serves as a natural hemostatic and immunomodulatory agent, we examined the ability of an FDA-approved neurosurgical hemostatic coating and an ECM coating derived from primary rat astrocytes to reduce the FBR surrounding a penetrating microelectrode array chronically implanted in rat cortex. Using quantitative methods, we examined various components of the FBR in vitro and after implantation. In vitro assays showed that both coatings accelerated coagulation in a similar fashion but only the astrocyte-derived material suppressed macrophage activation. In addition, the ECM coating derived from astrocytes, also decreased the astrogliotic response 8 weeks after implantation. Neither coating had a significant influence on the intensity or spatial distribution of FBR biomarkers 1 week after implantation or on degree of macrophage activation or neuronal survival at the later time point. The results show that microelectrode coatings with similar hemostatic properties but different immunomodulatory characteristics differentially affect the FBR to an anchored, single-shank, silicon microelectrode array. The results also support the concept that divergent biological pathways affect the various components of the FBR in the CNS and suggests that decreasing its impact will require a multifaceted approach.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/patologia , Eletrodos Implantados , Matriz Extracelular/metabolismo , Gliose/patologia , Animais , Colágeno/metabolismo , Reação a Corpo Estranho/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Microeletrodos , Ratos Sprague-Dawley
2.
Biomaterials ; 53: 753-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25890770

RESUMO

The clinical usefulness of brain machine interfaces that employ penetrating silicon microelectrode arrays is limited by inconsistent performance at chronic time points. While it is widely believed that elements of the foreign body response (FBR) contribute to inconsistent single unit recording performance, the relationships between the FBR and recording performance have not been well established. To address this shortfall, we implanted 4X4 Utah Electrode Arrays into the cortex of 28 young adult rats, acquired electrophysiological recordings weekly for up to 12 weeks, used quantitative immunohistochemical methods to examine the intensity and spatial distribution of neural and FBR biomarkers, and examined whether relationships existed between biomarker distribution and recording performance. We observed that the FBR was characterized by persistent inflammation and consisted of typical biomarkers, including presumptive activated macrophages and activated microglia, astrogliosis, and plasma proteins indicative of blood-brain-barrier disruption, as well as general decreases in neuronal process distribution. However, unlike what has been described for recording electrodes that create only a single penetrating injury, substantial brain tissue loss generally in the shape of a pyramidal lesion cavity was observed at the implantation site. Such lesions were also observed in stab wounded animals indicating that the damage was caused by vascular disruption at the time of implantation. Using statistical approaches, we found that blood-brain barrier leakiness and astrogliosis were both associated with reduced recording performance, and that tissue loss was negatively correlated with recording performance. Taken together, our data suggest that a reduction of vascular damage at the time of implantation either by design changes or use of hemostatic coatings coupled to a reduction of chronic inflammatory sequela will likely improve the recording performance of high density intracortical silicon microelectrode arrays over long indwelling periods and lead to enhanced clinical use of this promising technology.


Assuntos
Astrócitos/patologia , Barreira Hematoencefálica , Gliose/fisiopatologia , Microeletrodos , Silício , Animais , Masculino , Ratos , Ratos Sprague-Dawley
3.
J Neural Eng ; 12(1): 011001, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25460808

RESUMO

To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing.


Assuntos
Encéfalo/fisiologia , Materiais Revestidos Biocompatíveis/síntese química , Eletrodos Implantados , Eletroencefalografia/instrumentação , Microeletrodos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Interfaces Cérebro-Computador , Desenho de Equipamento , Análise de Falha de Equipamento
4.
Biomaterials ; 36: 33-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25310936

RESUMO

Available evidence indicates that pro-inflammatory cytokines produced by immune cells are likely responsible for the negative sequela associated with the foreign body response (FBR) to chronic indwelling implants in brain tissue. In this study a computational modeling approach was used to design a diffusion sink placed at the device surface that would retain pro-inflammatory cytokines for sufficient time to passively antagonize their impact on the FBR. Using quantitative immunohistochemistry, we examined the FBR to such engineered devices after a 16-week implantation period in the cortex of adult male Sprague-Dawley rats. Our results indicate that thick permeable surface coatings, which served as diffusion sinks, significantly reduced the FBR compared to implants either with no coating or with a thinner coating. The results suggest that increasing surface permeability of solid implanted devices to create a diffusion sink can be used to reduce the FBR and improve biocompatibility of chronic indwelling devices in brain tissue.


Assuntos
Encéfalo/imunologia , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/prevenção & controle , Próteses e Implantes/efeitos adversos , Animais , Citocinas/imunologia , Análise de Elementos Finitos , Reação a Corpo Estranho/imunologia , Masculino , Permeabilidade , Ratos Sprague-Dawley
5.
J Mater Chem B ; 2(16): 2248-2258, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25132966

RESUMO

Despite successful initial recording, neuroinflammatory-mediated oxidative stress products can contribute to microelectrode failure by a variety of mechanisms including: inducing microelectrode corrosion, degrading insulating/passivating materials, promoting blood-brain barrier breakdown, and directly damaging surrounding neurons. We have shown that a variety of anti-oxidant treatments can reduce intracortical microelectrode-mediated oxidative stress, and preserve neuronal viability. Unfortunately, short-term soluble delivery of anti-oxidant therapies may be unable to provide sustained therapeutic benefits due to low bio-availability and fast clearance rates. In order to develop a system to provide sustained neuroprotection, we investigated modifying the microelectrode surface with an anti-oxidative coating. For initial proof of concept, we chose the superoxide dismutase (SOD) mimetic Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP). Our system utilizes a composite coating of adsorbed and immobilized MnTBAP designed to provide an initial release followed by continued presentation of an immobilized layer of the antioxidant. Surface modification was confirmed by XPS and QCMB-D analysis. Antioxidant activity of composite surfaces was determined using a Riboflavin/NitroBlue Tetrazolium (RF/NBT) assay. Our results indicate that the hybrid modified surfaces provide several days of anti-oxidative activity. Additionally, in vitro studies with BV-2 microglia cells indicated a significant reduction of intracellular and extracellular reactive oxygen species when cultured on composite MnTBAP surfaces.

6.
J Neural Eng ; 11(5): 056014, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25125443

RESUMO

OBJECTIVE: The mechanisms underlying intracortical microelectrode encapsulation and failure are not well understood. A leading hypothesis implicates the role of the mechanical mismatch between rigid implant materials and the much softer brain tissue. Previous work has established the benefits of compliant materials on reducing early neuroinflammatory events. However, recent studies established late onset of a disease-like neurodegenerative state. APPROACH: In this study, we implanted mechanically-adaptive materials, which are initially rigid but become compliant after implantation, to investigate the long-term chronic neuroinflammatory response to compliant intracortical microelectrodes. MAIN RESULTS: Three days after implantation, during the acute healing phase of the response, the tissue response to the compliant implants was statistically similar to that of chemically matched stiff implants with much higher rigidity. However, at two, eight, and sixteen weeks post-implantation in the rat cortex, the compliant implants demonstrated a significantly reduced neuroinflammatory response when compared to stiff reference materials. Chronically implanted compliant materials also exhibited a more stable blood-brain barrier than the stiff reference materials. SIGNIFICANCE: Overall, the data show strikingly that mechanically-compliant intracortical implants can reduce the neuroinflammatory response in comparison to stiffer systems.


Assuntos
Materiais Revestidos Biocompatíveis/efeitos adversos , Eletrodos Implantados/efeitos adversos , Encefalite/etiologia , Encefalite/patologia , Microeletrodos/efeitos adversos , Animais , Desenho Assistido por Computador , Elasticidade , Encefalite/prevenção & controle , Análise de Falha de Equipamento , Masculino , Teste de Materiais , Desenho de Prótese , Ratos , Ratos Sprague-Dawley
7.
J Mater Chem B ; 2(17): 2517-2529, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24778808

RESUMO

A major limitation to the use of microelectrode technologies in both research and clinical applications is our inability to consistently record high quality neural signals. There is increasing evidence that recording instability is linked, in part, to neuroinflammation. A number of factors including extravasated blood products and macrophage released soluble factors are believed to mediate neuroinflammation and the resulting recording instability. However, the roles of other inflammatory stimuli, such as residual endotoxin contamination, are poorly understood. Therefore, to determine the effect of endotoxin contamination we examined the brain tissue response of C57/BL6 mice to non-functional microelectrodes with a range of endotoxin levels. Endotoxin contamination on the sterilized microelectrodes was measured using a limulus amebocyte lysate test following FDA guidelines. Microelectrodes sterilized by autoclave, dry heat, or ethylene oxide gas, resulted in variable levels of residual endotoxins of 0.55 EU/mL, 0.22 EU/mL, and 0.11 EU/mL, respectively. Histological evaluation at two weeks showed a direct correlation between microglia/macrophage activation and endotoxin levels. Interestingly, astrogliosis, neuronal loss, and blood brain barrier dysfunction demonstrated a threshold-dependent response to bacterial endotoxins. However, at sixteen weeks, no histological differences were detected, regardless of initial endotoxin levels. Therefore, our results demonstrate that endotoxin contamination, within the range examined, contributes to initial but not chronic microelectrode associated neuroinflammation. Our results suggest that minimizing residual endotoxins may impact early recording quality. To this end, endotoxins should be considered as a potent stimulant to the neuroinflammatory response to implanted intracortical microelectrodes.

8.
Prog Brain Res ; 194: 167-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21867802

RESUMO

A consistent feature of the foreign body response (FBR), irrespective of the type of implant, is persistent inflammation at the biotic-abiotic interface signaled by biomarkers of macrophage/microglial activation. Since macrophage-secreted factors shape the foreign body reaction, implant designs that reduce macrophage activation should improve biocompatibility and, with regard to recording devices, should improve reliability and longevity. At present, it is unclear whether the goal of seamless integration is possible or whether electrode developers can modulate specific aspects of the FBR by intentionally manipulating the constitutive properties of the implant. To explore this area, we studied the chronic brain FBR to planar solid silicon microelectrode arrays and planar lattice arrays with identical penetrating profiles but with reduced surface area in rats after an 8-week indwelling period. Using quantitative immunohistochemistry, we found that presenting less surface area after equivalent iatrogenic injury is accompanied by significantly less persistent macrophage activation, decreased blood brain barrier leakiness, and reduced neuronal cell loss. Our findings show that it is possible for implant developers to modulate specific aspects of the FBR by intentionally manipulating the constitutive properties of the implant. Our results also support the theory that the FBR to implanted electrode arrays, and likely other implants, can be explained by the presence of macrophages at the biotic-abiotic interface, which act as a sustained delivery source of bioactive agents that diffuse into the adjacent tissue and shape various features of the brain FBR. Further, our findings suggest that one method to improve the recording consistency and lifetime of implanted microelectrode arrays is to design implants that reduce the amount of macrophage activation at the biotic-abiotic interface and/or enhance the clearance or impact of their released factors.


Assuntos
Encéfalo/imunologia , Eletrodos Implantados , Reação a Corpo Estranho/imunologia , Microeletrodos , Animais , Materiais Biocompatíveis/metabolismo , Barreira Hematoencefálica/fisiopatologia , Encéfalo/fisiologia , Humanos , Neurônios/citologia , Neurônios/fisiologia , Ratos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...