Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(27): 11183-11189, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39015415

RESUMO

High-entropy alloys (HEAs), characterized as compositionally complex solid solutions with five or more metal elements, have emerged as a novel class of catalytic materials with unique attributes. Because of the remarkable diversity of multielement sites or site ensembles stabilized by configurational entropy, human exploration of the multidimensional design space of HEAs presents a formidable challenge, necessitating an efficient, computational and data-driven strategy over traditional trial-and-error experimentation or physics-based modeling. Leveraging deep learning interatomic potentials for large-scale molecular simulations and pretrained machine learning models of surface reactivity, our approach effectively rationalizes the enhanced activity of a previously synthesized PdCuPtNiCo HEA nanoparticle system for electrochemical oxygen reduction, as corroborated by experimental observations. We contend that this framework deepens our fundamental understanding of the surface reactivity of high-entropy materials and fosters the accelerated development and synthesis of monodisperse HEA nanoparticles as a versatile material platform for catalyzing sustainable chemical and energy transformations.

2.
Nanoscale ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028007

RESUMO

The synthesis of bismuth oxyhalides as defined nanostructures is hindered by their fast nucleation and growth in aqueous solutions. Using our recently developed single-source precursor, the formation of bismuth oxychloride in such solutions can be slowed significantly. As reported herein, this advance enables BiOCl formation to be investigated by in situ X-ray total scattering and in situ liquid cell transmission electron microscopy. In situ pair distribution function analysis of X-ray total scattering data reveals the local order of atomic structures throughout the synthesis, while in situ liquid cell transmission electron microscopy allows for tracking the growth of individual nanoparticles. Through this work, the precursor complex is shown to give rise to BiOCl upon heating in solution without the observation of structurally distinct intermediates. The emerging nanoparticles have a widened interlayer spacing, which moderately decreases as the particles grow. Mechanistic insights into the formation of bismuth oxyhalide nanoparticles, including the absence of distinct intermediates within the available time resolution, will help facilitate future design of controlled BiOX nanostructures.

3.
Nano Lett ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848456

RESUMO

As a single-particle characterization technique, optical microscopy has transformed our understanding of structure-function relationships of plasmonic nanoparticles, but the need for ex-situ-correlated electron microscopy to obtain structural information handicaps an otherwise exceptional high-throughput technique. Here, we present an all-optical alternative to electron microscopy to accurately and quickly extract structural information about single gold nanorods (Au NRs) using calcite-assisted localization and kinetics (CLocK) microscopy. Color CLocK images of single Au NRs allow scattering from the longitudinal and transverse plasmon modes to be imaged simultaneously, encoding spectral data in CLocK images that can then be extracted to obtain Au NR size and orientation. Moreover, through the use of convolutional neural networks, Au NR length, width, and aspect ratio can be predicted directly from color CLocK images within ∼10% of the true value measured by electron microscopy.

4.
ACS Appl Mater Interfaces ; 16(25): 31875-31876, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920006
5.
ACS Nano ; 18(23): 14791-14840, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814908

RESUMO

We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.

6.
Inorg Chem ; 63(18): 8131-8141, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38639743

RESUMO

Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl-Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl-Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials.

7.
Nanoscale ; 16(16): 8002-8012, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535987

RESUMO

Metal nanocrystals (NCs) produced by colloidal synthesis have a variety of structural features, such as different planes, edges, and defects. Even from the best colloidal syntheses, these characteristics are distributed differently in each NC. This inherent heterogeneity can play a significant role in the properties displayed by NCs. This manuscript reports the use of electrochemistry to synthesize Au NCs in a system evaluated to track individual NC growth trajectories as a first step toward rapid identification of NCs with different structural features. Au nanocubes were prepared colloidally and deposited onto a glassy carbon electrode using either electrospray or an airbrush, resulting in well-spaced Au nanocubes. The Au nanocubes then served as seeds as gold salt was reduced to deposit metal at constant potential. Deposition at constant potential facilitates overgrowth on the Au nanocubes to achieve new NC shapes. The effects of applied potential, deposition time, precursor concentration, and capping agents on NC shape evolution were studied. The outcomes are correlated to results from traditional colloidal syntheses, providing a bridge between the two synthetic strategies. Moreover, scanning electron microscopy was used to image the same NCs before and after deposition, linking individual seed features to differences in deposition. This ability is anticipated to enable tracking of individual growth trajectories of NCs to elucidate sources of heterogeneity in NC syntheses.

8.
Inorg Chem ; 62(24): 9640-9648, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37265371

RESUMO

Bismuth oxyhalides are a promising class of photocatalysts for harvesting solar energy. These materials are often synthesized in aqueous media with poor synthetic control resulting from the extremely fast nucleation and growth rates of the particles. These fast rates are caused by the rapid precipitation of bismuth salts with free halide ions. We have developed water-soluble precursors combining bismuth with either chlorine or bromine atoms in the same metal-organic complex. With the application of heat, halide ions are released, which then precipitate with bismuth ions as BiOX (X = Cl, Br). By controlling the halide ion formation rate, the nucleation and growth rates of BiOX materials can be tuned to provide synthetic control. The diverse potential of these precursors is demonstrated by synthesizing BiOX in three ways: aqueous colloidal synthesis, solid-state decomposition, and fabrication of films of BiOX via spray pyrolysis of the aqueous precursor solutions. These broadly applicable single-source precursors will enhance the ability to synthesize future BiOX materials with controlled morphologies.

9.
ACS Phys Chem Au ; 3(3): 252-262, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37249938

RESUMO

Simulating the plasmonic properties of colloidally derived metal nanoparticles with accuracy to their experimentally observed measurements is challenging due to the many structural and compositional parameters that influence their scattering and absorption properties. Correlation between single nanoparticle scattering measurements and simulated spectra emphasize these strong structural and compositional relationships, providing insight into the design of plasmonic nanoparticles. This Perspective builds from this history to highlight how the structural features of models used in simulation methods such as those based on the Finite-Difference Time-Domain (FDTD) method and Discrete Dipole Approximation (DDA) are of critical consideration for correlation with experiment and ultimately prediction of new nanoparticle properties. High-level characterizations such as electron tomography are discussed as ways to advance the accuracy of models used in such simulations, allowing the plasmonic properties of structurally complex nanoparticles to be better understood. However, we also note that the field is far from bringing experiment and simulation into agreement for plasmonic nanoparticles with complex compositions, reflecting analytical challenges that inhibit accurate model generation. Potential directions for addressing these challenges are also presented.

11.
Nanoscale ; 15(8): 3749-3756, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36645383

RESUMO

Galvanic replacement (GR) of monometallic nanoparticles (NPs) provides a versatile route to interesting bimetallic nanostructures, with examples such as nanoboxes, nanocages, nanoshells, nanorings, and heterodimers reported. The replacement of bimetallic templates by a more noble metal can generate trimetallic nanostructures with different architectures, where the specific structure has been shown to depend on the relative reduction potentials of the participating metals and lattice mismatch between the depositing and template metal phases. Now, the role of reaction stoichiometry is shown to direct the overall architecture of multimetallic nanostructures produced by GR with bimetallic templates. Specifically, the number of initial metal islands deposited on a NP template depends on the reaction stoichiometry. This outcome was established by studying the GR process between intermetallic PdCu (i-PdCu) NPs and either AuCl2- (Au1+) or AuCl4- (Au3+), producing i-PdCu-Au heterostructures. Significantly, multiple Au domains form in the case of GR with AuCl2- while only single Au domains form in the case of AuCl4-. These different NP architectures and their connection to reaction stoichiometry are consistent with Stranski-Krastanov (SK) growth, providing general guidelines on how the conditions of GR processes can be used to achieve multimetallic nanostructures with different defined architectures.

12.
Nanoscale ; 14(45): 16918-16928, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36345669

RESUMO

Plasmonic nanoparticles (NPs) have garnered excitement over the past several decades stemming from their unique optoelectronic properties, leading to their use in various sensing applications and theranostics. Symmetry dictates the properties of many nanomaterials, and nanostructures with low, but still defined symmetries, often display markedly different properties compared to their higher symmetry counterparts. While numerous methods are available to manipulate symmetry, surface protecting groups such as polymers are finding use due to their ability to achieve regioselective modification of NP seeds, which can be removed after overgrowth as shown here. Specifically, poly(styrene-b-polyacrylic acid) (PSPAA) is used to asymmetrically passivate cubic Au seeds through competition with hexadecyltrimethylammonium bromide (CTAB) ligands. The asymmetric passivation via collapsed PSPAA causes only select vertices and faces of the Au cubes to be available for deposition of new material (i.e., Au, Au-Ag alloy, and Au-Pd alloy) during seeded overgrowth. At low metal precursor concentrations, deposition follows observations from unpassivated seeds but with new material growing from only the exposed seed portions. At high metal precursor concentrations, nanobowl-like structures form from interaction between the depositing phase and the passivating PSPAA. Through experiment and simulation, the optoelectronic properties of these nanobowls were probed, finding that the interiors and exteriors of the nanobowls can be functionalized selectively as revealed by surface enhanced Raman spectroscopy (SERS).

13.
ACS Nano ; 16(11): 18873-18885, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36255141

RESUMO

Colloidally prepared core@shell nanoparticles (NPs) were converted to monodisperse high entropy alloy (HEA) NPs by annealing, including quinary, senary, and septenary phases comprised of PdCuPtNi with Co, Ir, Rh, Fe, and/or Ru. Intraparticle heterogeneity, i.e., subdomains within individual NPs with different metal distributions, was observed for NPs containing Ir and Ru, with the phase stabilities of the HEAs studied by atomistic simulations. The quinary HEA NPs were found to be durable catalysts for the oxygen reduction reaction, with all but the PdCuPtNiIr NPs presenting better activities than commercial Pt. Density functional theory (DFT) calculations for PdCuPtNiCo and PdCuPtNiIr surfaces (the two extremes in performance) found agreement with experiment by weighting the adsorption energy contributions by the probabilities of each active site based on their DFT energies. This finding highlights how intraparticle heterogeneity, which we show is likely overlooked in many systems due to analytical limitations, can be leveraged toward efficient catalysis.

14.
Chem Commun (Camb) ; 58(82): 11575-11578, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36168847

RESUMO

Chiral plasmonic nanocrystals with varied symmetries were synthesized by L-glutathione-guided overgrowth from Au tetrahedra, nanoplates, and octahedra, highlighting the importance of chiral molecule adsorption at transient kink sites. Large g-factors are possible and depend on symmetry. Simulations of their chiroptical properties from tomographically obtained nanocrystal models further verify their chirality.

15.
Inorg Chem ; 61(31): 12197-12206, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35892174

RESUMO

Volatile lanthanide coordination complexes are critical to the generation of new optical and magnetic materials. One of the most common precursors for preparing volatile lanthanide complexes is the hydrate with the general formula Ln(hfac)3(H2O)x (x = 3 for La-Nd, x = 2 for Sm) (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato). We have investigated the synthesis of Ln(hfac)3(H2O)x using more environmentally sustainable mechanochemical approaches. Characterization of the products using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, elemental analysis, and powder X-ray diffraction shows substantial differences in product distribution between methods. The mechanochemical synthesis of the hydrate complexes leads to a variety of coordination compounds including the expected hydrate product, the known retro-Claisen impurity, and hydrated protonated Hhfac ligand depending on the technique employed. Surprisingly, 10-coordinate complexes of the form Na2Ln(hfac)5·3H2O for Ln = La-Nd were also isolated from reactions using a mortar and pestle. The electrostatic bonding of lanthanide coordination complexes is a challenge for obtaining reproducible reactions and clean products. The reproducibility issues are most acute for the large, early lanthanides whereas for the mid to late lanthanides, reproducibility in terms of product distribution and yield is less of an issue because of their smaller size and greater charge to radius ratio. Ball milling increases reproducibility in terms of generating the desired Ln(hfac)3(H2O)x along with hydrated Hhfac (tetraol) and free Hhfac products. The results illustrate the dynamic behavior of lanthanide complexes in solution and the solid state as well as the structural diversity available to the early lanthanides.

16.
Nanoscale ; 14(17): 6471-6479, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35416234

RESUMO

Traditional colloidal syntheses of metal nanoparticles (NPs) are highly sensitive to the selection of and quality of chemical reducing agents and metal precursors. To address these challenges, we demonstrate the complete sonoelectrochemical synthesis of monodisperse metal NPs starting from bulk metal, using Cu as a model system. Electrochemical syntheses of NPs are of great interest as the oxidation and reduction processes that account for product formation can occur directly at the anode and cathode, respectively. This ability has the potential to improve reproducibility by simplifying the chemical pathway to NPs, with electrosyntheses often also providing unique kinetic pathways toward green product formation. Herein, ultrasound is coupled with electrosynthesis to clean the electrode surface, dispersing the NPs produced at the electrode into solution. We were able to shift the size distribution to form monodispersed metal NPs through control of applied potential (Vapplied) and ultrasonic pulses. The synthesis begins with electrooxidation of bulk Cu metal to directly dissolve metal ions into a microemulsion system. This step is followed by sonoelectroreduction of the ions, which facilitates the formation of dispersible, monodisperse Cu NPs with diameters <10 nm. The size distribution can be controlled by adjusting the Vapplied, pulse intensity, and pulse sequence implemented during sonoelectroreduction. We view this technique as a scalable method to synthesize metal NPs from bulk metal without chemical reducing agents.

17.
Acta Crystallogr C Struct Chem ; 78(Pt 4): 257-264, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35380129

RESUMO

The crystal structures of three ß-halolactic acids have been determined, namely, ß-chlorolactic acid (systematic name: 3-chloro-2-hydroxypropanoic acid, C3H5ClO3) (I), ß-bromolactic acid (systematic name: 3-bromo-2-hydroxypropanoic acid, C3H5BrO3) (II), and ß-iodolactic acid (systematic name: 2-hydroxy-3-iodopropanoic acid, C3H5IO3) (III). The number of molecules in the asymmetric unit of each crystal structure (Z') was found to be two for I and II, and one for III, making I and II isostructural and III unique. The difference between the molecules in the asymmetric units of I and II is due to the direction of the hydrogen bond of the alcohol group to a neighboring molecule. Molecular packing shows that each structure has alternating layers of intermolecular hydrogen bonding and halogen-halogen interactions. Hirshfeld surfaces and two-dimensional fingerprint plots were analyzed to further explore the intermolecular interactions of these structures. In I and II, energy minimization is achieved by lowering of the symmetry to adopt two independent molecular conformations in the asymmetric unit.


Assuntos
Ligação de Hidrogênio , Cristalografia por Raios X , Conformação Molecular
18.
ACS Mater Au ; 2(2): 143-153, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855759

RESUMO

Due to their ordered crystal structures and high structural stabilities, intermetallic nanoparticles often display enhanced catalytic, magnetic, and optical properties compared to their random alloy counterparts. Intermetallic nanoparticles can be achieved by thermal annealing of their disordered (random alloy) counterparts. However, high temperatures and long annealing times needed to achieve the disorder-to-order transition often lead to a loss of sample monodispersity and an increase in the average size of nanoparticles. Here, we performed ex situ powder X-ray diffraction (XRD) and in situ annealing transmission electron microscopy (TEM) experiments to elucidate nanoscale processes that contribute to the ordering of carbon-supported PdCu nanoparticles as a model system. Random alloy PdCu nanoparticles supported on carbon were thermally annealed for various lengths of time at the disorder-to-order phase transition temperature, where changes in nanoparticle size and the crystal phase were monitored. The nanoparticles were only completely transformed to the intermetallic phase by undertaking measures to deliberately increase their size by increasing the number of nanoparticles on the carbon support. In situ annealing TEM experiments reveal nanoscale processes that account for the disorder-to-order phase transformation. Five different processes were observed at 400 °C. Isolated nanoparticles remained in the random alloy phase or underwent a phase transformation to the intermetallic phase. Nanoparticles fused with neighboring nanoparticles resulting in no change in phase or conversion to the intermetallic phase. Evidence of vapor transport was also observed, as some isolated nanoparticles were found to diminish in size upon heating. These variable processes account for the heterogeneity often observed for intermetallic nanoparticle samples achieved through annealing and motivate the development of synthetic routes that suppress particle-particle coalescence, as well as investigating metal-support interactions to facilitate the disorder-to-order phase transformation under mild conditions. Overall, this work furthers our knowledge of the formation of intermetallic nanoparticles by thermal annealing approaches, which could accelerate the development of electrocatalysts and the application of intermetallic nanoparticles in magnetic storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...