Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Open J Eng Med Biol ; 5: 306-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766539

RESUMO

Goal: Parkinson's disease (PD) can lead to gait impairment and Freezing of Gait (FoG). Recent advances in cueing technologies have enhanced mobility in PD patients. While sensor technology and machine learning offer real-time detection for on-demand cueing, existing systems are limited by the usage of smartphones between the sensor(s) and cueing device(s) for data processing. By avoiding this we aim at improving usability, robustness, and detection delay. Methods: We present a new technical solution, that runs detection and cueing algorithms directly on the sensing and cueing devices, bypassing the smartphone. This solution relies on edge computing on the devices' hardware. The wearable system consists of a single inertial sensor to control a stimulator and enables machine-learning-based FoG detection by classifying foot motion phases as either normal or FoG-affected. We demonstrate the system's functionality and safety during on-demand gait-synchronous electrical cueing in two patients, performing freezing of gait assessments. As references, motion phases and FoG episodes have been video-annotated. Results: The analysis confirms adequate gait phase and FoG detection performance. The mobility assistant detected foot motions with a rate above 94 % and classified them with an accuracy of 84 % into normal or FoG-affected. The FoG detection delay is mainly defined by the foot-motion duration, which is below the delay in existing sliding-window approaches. Conclusions: Direct computing on the sensor and cueing devices ensures robust detection of FoG-affected motions for on demand cueing synchronized with the gait. The proposed solution can be easily adopted to other sensor and cueing modalities.

2.
Front Hum Neurosci ; 16: 768575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185496

RESUMO

The understanding of locomotion in neurological disorders requires technologies for quantitative gait analysis. Numerous modalities are available today to objectively capture spatiotemporal gait and postural control features. Nevertheless, many obstacles prevent the application of these technologies to their full potential in neurological research and especially clinical practice. These include the required expert knowledge, time for data collection, and missing standards for data analysis and reporting. Here, we provide a technological review of wearable and vision-based portable motion analysis tools that emerged in the last decade with recent applications in neurological disorders such as Parkinson's disease and Multiple Sclerosis. The goal is to enable the reader to understand the available technologies with their individual strengths and limitations in order to make an informed decision for own investigations and clinical applications. We foresee that ongoing developments toward user-friendly automated devices will allow for closed-loop applications, long-term monitoring, and telemedical consulting in real-life environments.

3.
Exp Neurol ; 352: 114011, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35176273

RESUMO

Gait impairments in Parkinson's disease remain a scientific and therapeutic challenge. The advent of new deep brain stimulation (DBS) devices capable of recording brain activity from chronically implanted electrodes has fostered new studies of gait in freely moving patients. The hope is to identify gait-related neural biomarkers and improve therapy using closed-loop DBS. In this context, animal models offer a wealth of opportunities to investigate gait network impairments at multiple biological scales and address unresolved questions from clinical research. Yet, the contribution of rodent models to the development of future neuromodulation therapies will rely on translational validity. In this review, we summarize the most effective strategies to model parkinsonian gait in rodents. We discuss how clinical observations have inspired targeted brain lesions in animal models, and whether resulting motor deficits and network oscillations match recent findings in humans. We conclude that future research should incorporate behavioral tests with increased cognitive demands to potentially uncover episodic gait impairments in rodents. Additionally, we expect that basic research will benefit from the implementation of evolving signal processing strategies from clinical research. This coevolution of translational research may contribute to the future optimization of gait therapy in Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Animais , Estimulação Encefálica Profunda/métodos , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...