Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517055

RESUMO

The development of sensing coatings, as important sensor elements that integrate functionality, simplicity, chemical stability, and physical stability, has been shown to play a major role in electrochemical sensing system development trends. Simple and versatile assembling procedures and scalability make polyelectrolytes highly convenient for use in electrochemical sensing applications. Polyelectrolytes are mainly used in electrochemical sensor architectures for entrapping (incorporation, immobilization, etc.) various materials into sensing layers. These materials can often increase sensitivity, selectivity, and electronic communications with the electrode substrate, and they can mediate electron transfer between an analyte and transducer. Analytical performance can be significantly improved by the synergistic effect of materials (sensing material, transducer, and mediator) present in these composites. As most reported methods for the preparation of polyelectrolyte-based sensing layers are layer-by-layer and casting/coating methods, this review focuses on the use of the latter methods in the development of electrochemical sensors within the last decade. In contrast to many reviews related to electrochemical sensors that feature polyelectrolytes, this review is focused on architectures of sensing layers and the role of polyelectrolytes in the development of sensing systems. Additionally, the role of polyelectrolytes in the preparation and modification of various nanoparticles, nanoprobes, reporter probes, nanobeads, etc. that are used in electrochemical sensing systems is also reviewed.

2.
Acta Chim Slov ; 65(3): 698-708, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33562924

RESUMO

In this paper, magnesium based materials (Mg and Mg-alloy (AZ91D)) were surface modified using various organic acids (carboxylic and phosphonic), in order to improve corrosion resistance and enhance theirs biocompatibility. Formations of surface layer were performed by tethering by aggregation and growth (T-BAG) method. Organization and bond mode of these layers were examined by Fourier transform infrared spectroscopy (FTIR). Additionally, semiempirical quantum molecular modeling calculation methods were used for getting insight into their structural and electronic properties, as also as corrosion resistance in the physiological solution (Hanks' solution). Corrosion resistance of modified materials were investigated by electrochemical impedance spectroscopy (EIS) in the physiological solution (Hanks' solution) and obtained results reveal a beneficial effect of the modification by forming organic acids self-assembled monolayer (SAM) on the corrosion properties of magnesium based materials, especially layers of octadecylphosphonic acid. The maximum corrosion inhibition efficiency of 87% for magnesium and of 93% for Mg-alloy (AZ91D) are achieved by the formation of octadecylphosphonic acid (ODPA) SAM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...