Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365543

RESUMO

The fumed silica influence on the morphology, coagulation processes, and rheological properties of suspensions in dimethyl sulfoxide (DMSO) and polyacrylonitrile (PAN)-DMSO solutions has been studied for the production of composite films and fibers. It has been shown that silica-DMSO concentrated suspensions (24 wt%) form a weak gel with a yield point of about 200 Pa. At concentrations of ~5 wt% and above the dispersions, depending on the shear stress, are pseudoplastic or dilatant liquids. It has been found that the silica addition method into a PAN solution has a significant impact on the aggregates dispersibility and the rheological behavior of the obtained systems. A thixotropy appearance and a sharp increase in the relaxation time were observed for PAN solutions at a SiO2 content of more than 3-5 wt%, which indicates the formation of structures with a gel-like rheological behavior. Upon reaching the critical stress their destruction takes place and the system starts to behave like a viscoelastic liquid. Two spinning methods have been used for preparing fibers: standard wet and mechanotropic. By the mechanotropic method it is possible to achieve a higher draw ratio at spinning and to obtain fibers with better mechanical properties. It is possible to spin fibers from PAN solutions containing up to 15 wt% of silica per polymer with a tensile strength up to 600 MPa.

2.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365642

RESUMO

AB-polybenzimidazole (ABPBI) dissolution kinetics in an eco-friendly complex acid-free solvent based on dimethyl sulfoxide (DMSO), methanol and KOH, and the rheological behavior of their solutions are investigated. The optimal component ratio of solvent providing the complete ABPBI dissolution is determined. Methanol containing dissolved KOH contributes to the creation of a single-phase superbasic medium, which accelerates and improves the polymer solubility in a mixture with DMSO, significantly reducing the viscoelasticity of the resulting solution. The optimum methanol content is up to 60 wt.% related to DMSO. The polymer dissolution rate increases by 5 times in this composition. It found the polymer concentration of 9% is close to the dissolution limit due to the strong solution structuring, which is probably associated with an increase in the amount of water released during the KOH-methanol-DMSO interactions. As a result, the conditions for obtaining high concentrated solutions in a complex, mainly organic solvent for fiber spinning are developed. The viscoelastic properties of solutions are measured in the concentration range of 1-9% at temperatures of 20-50 °C. The flow activation energy for 7 and 9% solutions decreases by 1.5 and 2.3 times, respectively, as the content of methanol in the complex solvent increases from 10 to 60%.

3.
Materials (Basel) ; 15(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35160753

RESUMO

A series of model experiments were carried out on drops of poly-(o-aminophenylene)naphthoylenimide (PANI-O) solutions in N-methyl-2-pyrrolidone (NMP) surrounded by a coagulant of different compositions as starting points of defect-free fibers spinning by the wet method. An influence of compositions of dopes and multicomponent coagulants on the diffusion kinetics and drop morphology during coagulation has been investigated. It is shown that the defining parameters of the coagulation process are viscoelastic properties of the polymer solution and the diffusion activity of the coagulant, meaning not only the rate of coagulation but also the presence/absence of macro defects in the resulting fiber. The optimal morphology of as-spun fibers is obtained by coagulation of solution in a three-component mixture containing solvent and two precipitants of different activity (water and ethanol). The chosen coagulating mixture was used for the fiber spinning of PANI-O with different molecular weights dopes, and fibers with sufficiently high strength (~250 MPa), moduli (~2.1 MPa), and elongation at break (50%) were obtained.

4.
Polymers (Basel) ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114143

RESUMO

The effect of temperature and storage time at a constant temperature on the stability of poly-(o-aminophenylene)naphthoylenimide solutions in N-methylpyrrolidone has been analyzed using rotational rheometry. A temperature-time window beyond which an irreversible change in the viscoelastic properties of solutions due to cumulative reactions of continuous polymerization and possible intramolecular cyclization has been detected. The influence of polymer concentration and its molecular weight on the rheological properties of solutions determining the choice of methods for their processing into fibers and films has been investigated. The effect of non-solvents (water and ethanol) additives on the rheological properties of solutions and the kinetics of their coagulation has been studied. Dosed addition of non-solvent into the solution promotes a significant increase in the viscoelasticity up to gelation and phase separation. Non-solvent presence in the polymer solutions reduces the activity of the solvent, accelerates the movement of the diffusion front at coagulation, and minimizes the number of macro defects. The combination of parameters under investigation renders it possible for the first time to develop new principles modifying dopes for wet spinning into aqueous or ethanol coagulation bath and finally to obtain a heat- and fire-resistant polynaphthoylenebenzimidazole fibers.

5.
Materials (Basel) ; 13(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764383

RESUMO

The influence of introducing acrylic acid (AA) into the reaction mixture with acrylonitrile at the synthesis of copolymers by free-radical polymerization (FRP) and radical polymerization with reversible addition-fragmentation chain transfer (RAFT) on the rheological properties of their solutions in dimethyl sulfoxide, as well as on the capability to spin fibers by the mechanotropic method, is analyzed. The influence of AA dosing conditions on the rheological properties of the solutions in the concentration range above the crossover point was not revealed. In the case of RAFT synthesis, the rheological properties differ distinctively in the high concentration region that is expressed by unusual viscoelastic characteristics. Dilute solution viscometry revealed the influence of the comonomer loading order on the interaction intensity of the copolymer macromolecules with a solvent, which is more pronounced for samples synthesized by FRP and can be associated with the copolymers' molecular structure. Fiber spinning from solutions of polyacrylonitrile and its copolymers (PAN) synthesized by the RAFT method was not able to achieve a high degree of orientation drawing, while for polymers with a wider molecular weight distribution synthesized by FRP, it was possible to realize large stretches, which led to high-quality fibers with strength values up to 640 MPa and elongation at a break of 20%.

6.
Polymers (Basel) ; 12(4)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260347

RESUMO

The effect of additives of polydimethylsiloxanes (PDMS) with various molecular weights on the morphology and rheological behavior of polyacrylonitrile (PAN) solutions in dimethyl sulfoxide has been analyzed. It was shown that only partial compatibility of the PDMS with the lowest molecular weight member of the homologous series studied-hexamethyldisiloxane-with PAN solution takes place. All other PDMS samples form emulsions with PAN solutions. The coalescence rate of PDMS drops depends on the viscosity ratio of the disperse phase and the continuous medium, which determines both the duration of dispersion preparation and the conditions for processing emulsions into fibers and films. An anomalous change in viscosity for a series of emulsions with different concentrations of additives, associated with the slippage, was detected. The relaxation properties of emulsions "feel" macro-phase separation. Modeling of the wet spinning process has shown that the morphology of the deposited solution drop reflects the movement of the diffusion front, leading to the gathering droplets in the center of the deposited formulation drop or to their localization in a certain arrangement. It was shown that the emulsion jets upon stretching undergo phase separation.

7.
Materials (Basel) ; 12(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731389

RESUMO

A new approach to the synthesis of polynaphthoylenebenzimidazoles and heat resistant fiber spinning has been developed using an environmentally friendly and energy efficient method, which operates with solutions of pre-polymers based on 3,3',4,4'-tetraaminodiphenyl ether and 1,4,5,8-naphthalenetetracarboxylic acid dianhydride in N-methylpyrrolidone. Rheological properties of polymer reaction solutions and appropriate coagulant mixtures were investigated for further wet spinning process. The coagulation process was investigated through microscopic observation of solution droplets which imitate jet/fiber cross section surrounded with coagulants of different composition. For the case of the most optimal viscoelastic properties of dopes the best coagulant was found to be a ternary mixture ethanol/water/NMP (20/10/70). Fibers were prepared through the wet spinning from pre-polymers of various molecular weight characterized by intrinsic viscosity. As a result, complex yarns were spun, and their morphology was characterized and mechanical properties were measured. The strength of ~300 MPa and elastic modulus of ~2 GPa and elongation at break of ~20% were reached for the best fibers at average diameter of ~20 µm. After heat treatment "Lola-M" fibers do not burn and do not support combustion in open flame.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...