Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 108(16): 167602, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22680756

RESUMO

We present thermoelectric measurements of the heat dissipated due to ferromagnetic resonance of a Permalloy strip. A microwave magnetic field, produced by an on-chip coplanar strip waveguide, is used to drive the magnetization precession. The generated heat is detected via Seebeck measurements on a thermocouple connected to the ferromagnet. The observed resonance peak shape is in agreement with the Landau-Lifshitz-Gilbert equation and is compared with thermoelectric finite-element modeling. Unlike other methods, this technique is not restricted to electrically conductive media and is therefore also applicable to for instance ferromagnetic insulators.

2.
Nat Nanotechnol ; 7(3): 166-8, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22306839

RESUMO

The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.

3.
Phys Rev Lett ; 105(13): 136601, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230794

RESUMO

We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third harmonic voltage response nonlocally, the model is experimentally examined. The results indicate that the combination of Peltier and Seebeck effects contributes significantly to the nonlocal baseline resistance. Moreover, we found that the second and third harmonic response signals can be attributed to Joule heating and temperature dependencies of both the Seebeck coefficient and resistivity.

4.
J Phys Condens Matter ; 19(29): 295206, 2007 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-21483058

RESUMO

A number of time-resolved optical experiments probing and controlling the spin and charge dynamics of the high-mobility two-dimensional electron gas in a GaAs/AlGaAs heterojunction are discussed. These include time-resolved reflectivity, luminescence, transient grating, magneto-optical Kerr effect, and electro-optical Kerr effect experiments. The optical experiments provide information on the carrier lifetimes and spin dephasing times, as well as on the carrier diffusion coefficient which directly gives the charge mobility. A combination of the two types of Kerr experiment proves to be useful in extracting both the carrier lifetimes and spin dephasing times in a single experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...