Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7973): 323-327, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344595

RESUMO

The black phase of formamidinium lead iodide (FAPbI3) perovskite shows huge promise as an efficient photovoltaic, but it is not favoured energetically at room temperature, meaning that the undesirable yellow phases are always present alongside it during crystallization1-4. This problem has made it difficult to formulate the fast crystallization process of perovskite and develop guidelines governing the formation of black-phase FAPbI3 (refs. 5,6). Here we use in situ monitoring of the perovskite crystallization process to report an oriented nucleation mechanism that can help to avoid the presence of undesirable phases and improve the performance of photovoltaic devices in different film-processing scenarios. The resulting device has a demonstrated power-conversion efficiency of 25.4% (certified 25.0%) and the module, which has an area of 27.83 cm2, has achieved an impressive certified aperture efficiency of 21.4%.

2.
Nat Commun ; 12(1): 5624, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561460

RESUMO

Complex phenomena are prevalent during the formation of materials, which affect their processing-structure-function relationships. Thin films of methylammonium lead iodide (CH3NH3PbI3, MAPI) are processed by spin coating, antisolvent drop, and annealing of colloidal precursors. The structure and properties of transient and stable phases formed during the process are reported, and the mechanistic insights of the underlying transitions are revealed by combining in situ data from grazing-incidence wide-angle X-ray scattering and photoluminescence spectroscopy. Here, we report the detailed insights on the embryonic stages of organic-inorganic perovskite formation. The physicochemical evolution during the conversion proceeds in four steps: i) An instant nucleation of polydisperse MAPI nanocrystals on antisolvent drop, ii) the instantaneous partial conversion of metastable nanocrystals into orthorhombic solvent-complex by cluster coalescence, iii) the thermal decomposition (dissolution) of the stable solvent-complex into plumboiodide fragments upon evaporation of solvent from the complex and iv) the formation (recrystallization) of cubic MAPI crystals in thin film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...