Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 11(11): e0098222, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36214704

RESUMO

A recent outbreak of salmonellosis in wild birds sickened 29 individuals in 12 states, leading to 14 hospitalizations. Here, we report the draft genome sequence of a multidrug-resistant strain of Salmonella enterica serovar Typhimurium that was isolated from a bird experiencing symptoms of salmonellosis.

2.
Ecol Evol ; 9(9): 5146-5157, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31110668

RESUMO

In vertebrate animals, genes of the major histocompatibility complex (MHC) determine the set of pathogens to which an individual's adaptive immune system can respond. MHC genes are extraordinarily polymorphic, often showing elevated nonsynonymous relative to synonymous sequence variation and sharing presumably ancient polymorphisms between lineages. These patterns likely reflect pathogen-mediated balancing selection, for example, rare-allele or heterozygote advantage. Such selection is often reinforced by disassortative mating at MHC. We characterized exon 2 of MHC class II, corresponding to the hypervariable peptide-binding region, in song sparrows (Melospiza melodia). We compared nonsynonymous to synonymous sequence variation in order to identify positively selected sites; assessed evidence for trans-species polymorphisms indicating ancient balancing selection; and compared MHC similarity of socially mated pairs to expectations under random mating. Six codons showed elevated ratios of nonsynonymous to synonymous variation, consistent with balancing selection, and we characterized several alleles similar to those occurring in at least four other avian families. Despite this evidence for historical balancing selection, mated pairs were significantly more similar at MHC than were randomly generated pairings. Nonrandom mating at MHC thus appears to partially counteract, not reinforce, pathogen-mediated balancing selection in this system. We suggest that in systems where individual fitness does not increase monotonically with MHC diversity, assortative mating may help to avoid excessive offspring heterozygosity that could otherwise arise from long-standing balancing selection.

3.
J Hered ; 108(2): 127-134, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940472

RESUMO

Infectious disease represents an emerging threat to natural populations, particularly when hosts are more susceptible to novel parasites (allopatric) than to parasites from the local area (sympatric). This pattern could arise through evolutionary processes (host populations become adapted to their local parasites and genetically differentiated from other populations at immune-related loci) and/or through ecological interactions (host individuals develop resistance to local parasites through previous exposure). The relative importance of these candidate mechanisms remains unclear. In jawed vertebrates, genes of the major histocompatibility complex (MHC) play a fundamental role in immunity and are compelling candidates for spatially varying selection. We recently showed that song sparrows (Melospiza melodia) are more susceptible to allopatric than to sympatric strains of malaria (Plasmodium). In the current study, to determine whether population differences at MHC explain this pattern, we characterized the peptide-binding regions of MHC (classes I and II) of birds that did or did not become infected in the previous experiment. We recovered up to 4 alleles per individual at class I, implying at least 2 loci, and up to 26 alleles per individual at class II, implying at least 13 loci. Individuals with more class I alleles were less likely to become infected by Plasmodium, consistent with parasite-mediated balancing selection. However, we found no evidence for population genetic differentiation at either class of MHC, based on 36 individuals sequenced. Resistance to sympatric parasites previously described for this system likely stems from individuals' prior immune experience, not from population differentiation and locally protective alleles at MHC.


Assuntos
Resistência à Doença/genética , Genética Populacional , Interações Hospedeiro-Parasita/genética , Complexo Principal de Histocompatibilidade/genética , Pardais/genética , Alelos , Animais , Resistência à Doença/imunologia , Suscetibilidade a Doenças , Variação Genética , Heterozigoto , Interações Hospedeiro-Parasita/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Ontário , Seleção Genética , Pardais/imunologia , Pardais/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...