Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 75(19): 4109-18, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26249175

RESUMO

Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH.


Assuntos
Antígenos de Neoplasias/fisiologia , Anidrases Carbônicas/fisiologia , Neoplasias Colorretais/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Proteínas de Neoplasias/fisiologia , Animais , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/genética , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Anidrase Carbônica IX , Anidrases Carbônicas/análise , Anidrases Carbônicas/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/análise , Proteínas Recombinantes de Fusão/análise , Microambiente Tumoral
2.
Dalton Trans ; 40(23): 6196-205, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21499604

RESUMO

Conventional methods for radiolabelling biomolecules such as proteins and peptides with fluorine-18 for PET imaging rely on carbon-fluorine bond formation and are complex and inefficient. Several non-carbon elements form strong bonds (i.e. with high bond enthalpy) with fluorine, but with lower activation energy for their formation compared to carbon-fluorine bonds, whilst preserving a relatively high kinetic stability. In particular, by incorporating boron-, aluminium- and silicon-containing prosthetic groups into biomolecules, promising results have recently been achieved in the radiolabelling with F-18-fluoride under mild aqueous conditions, affording a level of convenience, efficiency and specific activity potentially superior to those offered by conventional C-F bond formation methods. The promise already shown by these early studies heralds a new branch of bioconjugate radiochemistry involving a wider range of "fluoridephilic" elements for synthesis of PET molecular imaging agents.


Assuntos
Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Alumínio/química , Animais , Boro/química , Quelantes/química , Marcação por Isótopo , Camundongos , Compostos Radiofarmacêuticos/farmacocinética , Silício/química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...