Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(3): 3280-3288, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122000

RESUMO

We present and characterize a narrow-linewidth external-cavity diode laser at 2 µm, and show that it represents a low-cost, high-performance alternative to fiber lasers for research into 2 µm photonic technologies for next-generation gravitational-wave detectors. A linewidth of 20 kHz for a 10 ms integration time was measured without any active stabilization, with frequency noise of ∼ 15 Hz/Hz between 3 kHz and 100 kHz. This performance is suitable for the generation of quantum squeezed light, and we measure intensity noise comparable to that of master oscillators used in current gravitational wave interferometers. The laser wavelength is tunable over a 120 nm range, and both the frequency and intensity can be modulated at up to 10 MHz by modulating the diode current. These features also make it suitable for other emerging applications in the 2 µm wavelength region including gas sensing, optical communications and LIDAR.

2.
Phys Rev Lett ; 123(23): 231107, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868462

RESUMO

The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).

3.
Opt Lett ; 44(21): 5386-5389, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675014

RESUMO

We demonstrate phase control for vacuum-squeezed light at a 2 µm wavelength, which is a necessary technology for proposed future gravitational wave observatories. The control scheme allowed examination of noise behavior at frequencies below 1 kHz and indicated that squeezing below this frequency was limited by dark noise and scattered light. We directly measure 3.9±0.2 dB of squeezing from 2 kHz to 80 kHz and 14.2±0.3 dB of antisqueezing relative to the shot noise level. The observed maximum level of squeezing is currently limited by photodetector quantum efficiency and laser instabilities at this new wavelength for squeezed light. Accounting for all losses, we conclude the generation of 11.3 dB of squeezing at the optical parametric oscillator.

4.
Phys Rev Lett ; 121(22): 221104, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547651

RESUMO

Newtonian gravitational noise from seismic fields will become a limiting noise source at low frequency for second-generation, gravitational-wave detectors. It is planned to use seismic sensors surrounding the detectors' test masses to coherently subtract Newtonian noise using Wiener filters derived from the correlations between the sensors and detector data. In this Letter, we use data from a seismometer array deployed at the corner station of the Laser Interferometer Gravitational Wave Observatory (LIGO) Hanford detector combined with a tiltmeter for a detailed characterization of the seismic field and to predict achievable Newtonian-noise subtraction levels. As was shown previously, cancellation of the tiltmeter signal using seismometer data serves as the best available proxy of Newtonian-noise cancellation. According to our results, a relatively small number of seismometers is likely sufficient to perform the noise cancellation due to an almost ideal two-point spatial correlation of seismic surface displacement at the corner station, or alternatively, a tiltmeter deployed under each of the two test masses of the corner station at Hanford will be able to efficiently cancel Newtonian noise. Furthermore, we show that the ground tilt to differential arm-length coupling observed during LIGO's second science run is consistent with gravitational coupling.

5.
Sci Rep ; 7(1): 14546, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109531

RESUMO

Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure - so-called 'optical springs' - are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments.

6.
Rev Sci Instrum ; 87(6): 063104, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370423

RESUMO

With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

7.
Rev Sci Instrum ; 79(10): 104501, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044736

RESUMO

This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.

8.
Phys Rev Lett ; 96(23): 231101, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16803364

RESUMO

In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors, we show for the first time that the time evolution of strong thermal lenses follows the predicted infinite sum of exponentials (approximated by a double exponential), and that such lenses can be compensated using an intracavity compensation plate heated on its cylindrical surface. We show that high finesse approximately 1400 can be achieved in cavities with internal compensation plates, and that mode matching can be maintained. The experiment achieves a wave front distortion similar to that expected for the input test mass substrate in the Advanced Laser Interferometer Gravitational Wave Observatory, and shows that thermal compensation schemes are viable. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.

9.
Opt Lett ; 27(21): 1905-7, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18033397

RESUMO

We demonstrate novel modulation-free frequency locking of a diode laser, utilizing a simple Sagnac interferometer to create an error signal from saturated-absorption spectroscopy. The interference condition at the output of the Sagnac is strongly affected by the sharp dispersion feature near an atomic resonance. Slight misalignment of the interferometer and subsequent spatially selective, or tilt, detection allows this phase change to be converted into an error signal. Tilt locking has significant advantages over previously described methods, as it requires only a small number of low-cost optical components and a detector. In addition, the system has the potential to be constructed as a plug-and-play fiber-coupled monolithic device to provide submegahertz stability for lasers in the commercial market.

10.
Appl Opt ; 39(21): 3638-43, 2000 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-18349936

RESUMO

Using a radio frequency coherent modulation and demodulation technique, we explicitly measure both the amplitude and the phase response of Fabry-Perot interferometers in reflection. This allows us to differentiate clearly between overcoupled and undercoupled cavities and allows a detailed measurement of the full width at half-maximum, the free spectral range, and the finesse of the cavities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...