Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(22): 13136-13145, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31638387

RESUMO

One of the main reasons behind our current lack of understanding of iron cycling in the oceans is our inability to characterize the ligands that control iron solubility, photosensitivity, reactivity, and bioavailability. We currently lack consensus about the nature and origin of these ligands. Here, we present the first field application of a new methodological development that allows the selective quantification of the fraction of Fe complexed to humic substances (HS). In the HS-rich surface Arctic waters, including the Fe-rich Transpolar Drift (TPD), we found that HS iron binding groups were largely occupied by iron (49%). The overall contribution of Fe-HS complexes to DFe concentrations was substantial at 80% without significant differences between TPD and non-TPD waters. Stabilization and transport of large concentrations of DFe across the surface of the Arctic Ocean are due to the formation of high concentrations of Fe-HS complexes. Competition of Arctic Fe-HS complexes with desferrioxamine and EDTA indicated that their stability constants are considerably higher than the stability constants previously found for riverine HS in temperate estuaries and HS standard material. This is the first case of identification of the ligand-dominating iron speciation over a specific region of the global ocean.


Assuntos
Substâncias Húmicas , Ferro , Regiões Árticas , Oceanos e Mares , Solubilidade
2.
Talanta ; 189: 359-364, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30086931

RESUMO

Improving our understanding of iron cycling in ocean waters is one of the most challenging tasks in oceanographic studies and requires new analytical strategies. The low solubility of inorganic iron in oxygen saturated waters is increased by organic complexation with a variety of natural ligands, the nature of which is a topic of debate. Electrochemical methods are important for speciation studies since they allow direct measurement of iron complexes at limits of detection below iron concentrations in ocean waters. Most of the natural iron ligands do not form electrolabile iron complexes with working electrodes currently in use. Humic substances are the exception as their iron complexes can be detected by cathodic voltammetry if a strong oxidant such as bromate is added for a catalytic reoxidation of iron. Here we propose a rearrangement and extension of the original analytical protocol (Laglera et al., 2007) [1]. Firstly, the humic standard prepared in ultrapure water is carefully saturated with iron before use, preventing underestimation of the iron-humic complexes during calibration. Secondly, before starting the common voltammetric analysis under iron saturation, extra voltammograms are collected at the natural iron concentration. We demonstrate that this rearrangement permits the determination of the percentage of iron-binding groups of humic substances in the sample that were originally bound to iron. After calibration, the concentration of iron present in the sample as humic complexes can be quantified. This is the first analytical development leading to the quantification of the contribution of a determined type of natural ligands to the organic speciation of iron in seawater. As a proof of concept we measured the concentration of Fe-HS complexes in Arctic Ocean waters characterized by a high content in terrigenous organic matter. We corroborated the importance of humic substances in the lateral transport of high concentrations of iron from the Arctic Ocean into the North Atlantic Ocean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...