Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13986, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977976

RESUMO

In this work, the possibility to reduce transition curvature in heat-assisted magnetic recording, using a conventional write head design, by shaping the recording field to counteract the circular profile of the heat pulse is investigated. Topology optimization of the head tip is performed in order to create the desired cross-track field profile for increasing distances from the write head tip. For the topology optimization, the adjoint method is utilized to calculate the necessary gradients and a binary optimization scheme is proposed. The optimizations are performed considering linearized material parameters reducing the computational complexity and the results are compared to optimizations incorporating the full non-linear material behavior. The optimized field profiles are evaluated for their influence on the read-back process. To do so, switching probability phase diagrams are calculated and the curvature parameter, the signal to noise ratio and the channel bit density are extracted. The presented results show that while transition curvature can be reduced by shaping the cross-track profile of the write field, this alone does not consequently lead to an improvement of the read back process. Therefore, completely new head designs, considering additional parameters have to be investigated.

2.
Sci Rep ; 12(1): 1119, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064136

RESUMO

A method to optimize the topology of hard as well as soft magnetic structures is implemented using the density approach for topology optimization. The stray field computation is performed by a hybrid finite element-boundary element method. Utilizing the adjoint approach the gradients necessary to perform the optimization can be calculated very efficiently. We derive the gradients using a "first optimize then discretize" scheme. Within this scheme, the stray field operator is self-adjoint allowing to solve the adjoint equation by the same means as the stray field calculation. The capabilities of the method are showcased by optimizing the topology of hard as well as soft magnetic thin film structures and the results are verified by comparison with an analytical solution.

3.
Sensors (Basel) ; 20(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271829

RESUMO

This manuscript discusses the difficulties with magnetic position and orientation (MPO) system design and proposes a general method for finding optimal layouts. The formalism introduces a system quality measure through state separation and reduces the question "How to design an MPO system?" to a global optimization problem. The latter is then solved by combining differential evolution algorithms with magnet shape variation based on analytical computations of the field. The proposed formalism is then applied to study possible realizations of continuous three-axis joystick motion tracking, realized with just a single magnet and a single 3D magnetic field sensor. The computations show that this is possible when a specific design condition is fulfilled and that large state separations as high as 1mT/∘ can be achieved under realistic conditions. Finally, a comparison to state-of-the-art design methods is drawn, computation accuracy is reviewed critically, and an experimental validation is presented.

4.
Sci Rep ; 9(1): 4827, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886184

RESUMO

In this paper, the thermal stability of skyrmion bubbles and the critical currents to move them over pinning sites were investigated. For the used pinning geometries and the used parameters, the unexpected behavior is reported that the energy barrier to overcome the pinning site is larger than the energy barrier of the annihilation of a skyrmion. The annihilation takes place at boundaries by current driven motion, as well as due to the excitation over energy barriers, in the absence of currents, without forming Bloch points. It is reported that the pinning sites, which are required to allow thermally stable bits, significantly increase the critical current densities to move the bits in skyrmion-like structures to about jcrit = 0.62 TA/m². The simulation shows that the applied spin transfer model predicts experimentally obtained critical currents to move stable skyrmions at room temperature well, which is in contrast to simulations based on spin orbit torque that predict significantly too low critical currents. By calculating the thermal stability, as well as the critical current, we can derive the spin torque efficiency η = ΔE/Ic = 0.19 kBT300/µA, which is in a similar range to the simulated spin torque efficiency of MRAM structures. Finally, it is shown that the stochastic depinning process of any racetrack-like device requires an extremely narrow depinning time distribution smaller than ~6% of the current pulse length to reach bit error rates smaller than 10-9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...